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ABSTRACT

Deep learning-based simulation techniques have shown stunning success across a
wide range of applications in the energy and geosciences. A critical step in apply-
ing any simulation technique to the characterization of petroleum source rocks is
obtaining a suitable simulation domain. In this work, we present image translation
models that generate image volumes suitable for segmentation and visualization
of gas flow through a shale rock volume. We introduce a regularization method
for improving 3D volume generation when only 2D training data is available and
present results applying this approach to calculating rock permeability from the
synthesized simulation domains. Overall, our results show that deep learning-
based image translation can play a crucial role in creating simulation domains for
characterization of geologic samples.

1 INTRODUCTION

Shale gas resources are critical for the U.S. energy supply. Since 2009, shale gas has accounted for
a majority of the increase in domestic energy production and contributed substantially to reduction
in CO2 emissions due to fuel switching (Zoback & Kohli, 2019; EIA/ARI, 2013). Rock features on
length scales fromO(10−9 m) toO(10+2 m) affect recovery in shales, and consequently nanoscale
characterization techniques—especially nanoscale imaging—are important for understanding shale
source rocks.

Nanoscale imaging in conjunction with digital rock physics allows for analysis and characteriza-
tion of morphological and petrophysical properties of source rock samples (Ketcham & Carlson,
2001; Vega et al., 2013; Blunt, 2017). This characterization approach, however, faces two signifi-
cant challenges. First, nanoscale image acquisition is typically expensive, time-consuming, and/or
sample-destructive. Second, 3D image volumes are required to simulate petrophysical properties,
but many imaging modalities that possess sufficiently high contrast and resolution to build useful
nanoscale simulation domains, such as electron microscopy, only acquire 2D planar images. Con-
sequently, we must reconstruct realistic 3D simulation domains when only 2D ground truth training
data is available.

In this work, we apply image translation models to generate 3D simulation domains for calculating
rock permeability from non-destructive 2D image data. In what follows, we present a multimodal
image acquisition and prediction workflow based on conditional generative adversarial networks
(CGANs), a modification of baseline CGAN models to improve volume generation, and simulation
of flow through a segmented image volume.

2 METHODOLOGY

2.1 IMAGE-BASED CHARACTERIZATION WORKFLOW

Image-based characterization for source rocks is most broadly defined as the process of acquiring,
processing, and analyzing the images using digital rock physics techniques. This workflow approx-
imately follows these steps:
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Figure 1: Multimodal imaging dataset. (a) Sample setup, (b) Imaged nano-CT volume of 30 µm
diameter plug, (c) Unprocessed FIB-SEM image slice, (d) Example of paired nano-CT/SEM-FIB
image slice overlay.

Image Acquisition → Data Curation and Model Training →

Image Prediction and Domain Generation → Analysis and Simulation

Multimodal imaging, where images of a sample are acquired at the same resolution scale with two
different image modalities, is an emerging and important area for shale characterization (Aljamaan
et al., 2017). In a multimodal image characterization workflow, images are acquired on multiple
imaging machines and deep learning models trained to predict one modality from the other. The
predicted images are then post-processed into a simulation domain that can be used to compute
morphological properties such as Minkowski functionals or petrophysical properties including ap-
parent permeability (Arns et al., 2010).

While multimodal imaging is commonplace in medical imaging (Torrado-Carvajal et al., 2016; Cao
et al., 2018), little prior work has applied multimodal imaging to the characterization of source
rocks. Nanoscale imaging modalities useful for shale characterization present a trade-off between
resolution and sample destruction. High-resolution/high-contrast methods often destroy samples to
acquire image volumes, while sample-preserving methods have comparatively lower contrast and
resolution. Multimodal imaging offers the potential to predict high-resolution images suitable for
segmentation and simulation from low-resolution, non-destructive images.

2.2 MULTIMODAL IMAGING DATASET

In this work, we use a dual modality nano-computed tomography (nano-CT) and focused ion beam
scanning electron microscopy (FIB-SEM) dataset of a shale sample from the Vaca Muerta formation,
one of the most prolific shale plays. After preliminary imaging, the sample is milled to a 30 µm
diameter plug (Fig. 1a) and imaged with nano-CT (Fig. 1b). The plug is then sequentially milled
into and imaged with scanning electron microscopy (Fig. 1c). The image slices from both modalities
are then aligned, normalized, and cropped to produce a paired multimodal image dataset (Fig. 1d).
Further details on this dataset are outlined in Anderson et al. (2020).

Darker pixel values in these images indicate low density material, with the darkest pixels corre-
sponding to fractures, organic matter and low density minerals. Flow in shales occurs through pore
networks located in organic matter and low density mineral regions, so these regions make up the
flow simulation domain. Lower density regions, however, are not well resolved on the nano-CT im-
ages, so we must employ image translation models to predict FIB-SEM images from nano-CT data
and to synthesize low density regions from nondestructive images. The synthesized lower density
regions can then be segmented into a suitable simulation domain to measure rock properties.

2.3 IMAGE VOLUME SYNTHESIS AND DOMAIN GENERATION

To generate low density regions for a simulation domain, we turn to image translation models. The
image acquisition environment restricts the data to 2D paired images, so we are limited to 2D-to-
2D image prediction models. Predicting FIB-SEM images from nano-CT data is a combination of
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Figure 2: Image prediction model. (a) Depiction of nano-CT image gradients propagating through
the generator network to the output image, (b) SR-GAN model with Jacobian regularization term.

image domain translation and single image super-resolution (SISR). Therefore, we apply the SR-
GAN model from Ledig et al. (2016) because it is a useful baseline model for SISR.

To improve image volume generation, we first note that ∇zS will be sparse for any SEM image
S. Therefore, we enforce continuity in the predicted image volumes by regularizing with ||∇zS||1.
This term, however, is not easily computed. For Ŝ = G(I), where Ŝ is the predicted SEM image
and I is the input nano-CT image, we observe that

||∇zŜ||1 ≤ C

∣∣∣∣∣
∣∣∣∣∣∂Ŝ∂I
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and therefore we can improve the z-direction continuity through Jacobian regularization. A depic-
tion of this regularization approach is shown in Fig. 2a. Using this Jacobian regularization term, the
training objective for the GAN models becomes:

G∗, D∗ = minimize
G,D

LGAN(G,D) + λ1LImage Similarity(G) + λ2LContinuity(G)

The SR-GAN model with the continuity loss is shown in Fig. 2b. This approach is inspired by work
on robust learning (Hoffman et al., 2019) and is comparable to regularizing the model to reduce the
sensitivity of network outputs to inputs.

Finally, we use threshold-based segmentation to create the final flow simulation domain. The his-
togram of pixel values in FIB-SEM images corresponds directly to different mineral types and is
proportional to the density of materials. So, thresholding is appropriate for creating a simulation
domain consisting of lower-density regions. We threshold the volume using the smallest voxel value
that creates a connected domain from the inlet to the outlet of the volume in the z-direction.

3 RESULTS

Synthesized image volumes using the baseline and regularized SR-GAN models are shown in Fig.
3. These volumes are synthesized by first training 2D-to-2D image generation models, then passing
x−y plane image slices of the nano-CT volume through the generator network. The x−y images are
therefore generated independently. In the synthesized volumes, we see that the regularized model
produces more continuous image features across slices.

The segmentation into a flow simulation domain of the volume synthesized with the regularized
SR-GAN model is shown in Fig. 4a. We simulate flow in the z-direction by using a permeability
solver in the PerGeos software. The simulation solves the Stokes equation using Finite Volume (FV)
discretization. Methane is introduced from the inlet at 1 MPa, with a 10−2 MPa pressure drop in
the z-direction. An additional volume is included at the inlet for pressure stabilization. No-flow
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Figure 3: Image volume synthesis results for SR-GAN model. (a) Input nano-CT volume, (b)
Synthesized image volume without regularization, and (c) Synthesized image with regularization.
Lighter shading indicates more dense minerals.

(a) (b) (c)

Figure 4: Flow simulation results for the regularized model. (a) Simulation domain (low density
regions), (b) Pressure field (including the additional inlet volume), (c) Flow streamlines.
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Table 1: Comparison of the flow properties predicted by the original and regularized SR-GAN
models. The permeability k, total porosity φ, and connected porosity φconnected are from PerGeos.

Model k (d) φ φconnected
Original 2.37× 10−5 20.7% 18.7%

Regularized 3.01× 10−5 18.9% 17.4%

lateral boundaries and single-phase viscosity (not adjusted for the role of confinement) are imposed.
The resulting pressure field and flow streamlines are shown in Fig. 4b and Fig. 4c. The results for
apparent permeability (measured by Darcy’s law) and porosity appear in Table 1.

4 DISCUSSION AND CONCLUSIONS

The image volume generation results show that the Jacobian regularization significantly improves
the quality of the predicted image volume. We assume that at this scale, rock image features should
be approximately isotropic, so x − y plane slices should resemble x − z and y − z plane slices.
The cross-sections in the regularized volumes qualitatively resemble the image generation planes,
showing that the regularization method proposed here improves volume generation with 2D-to-2D
image models. Indeed, we see that the apparent permeability for the regularized image volume is
also higher than that for the baseline volume, further suggesting that that the regularization technique
improves continuity in the z-direction.

Overall, our results show that it is possible to synthesize suitable simulation domains for visualizing
gas flow through rock volumes using only 2D data during training and non-destructive image data
during evaluation. Future work on this project should focus on additional processing to improve
the appearance of the cross-sectional image planes. Because we can obtain simulation domains
directly from non-destructive data, this image generation approach can be used to train models to
predict pressure fields and streamlines directly from nano-CT data. Finally, we believe there are
opportunities to employ the flow simulation as a prior to improve simulation domain synthesis.
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