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ABSTRACT

Deep learning has shown the potential to significantly accelerate numerical sim-
ulation of fluids without sacrificing accuracy, but prior works are limited to sta-
tionary flows with uniform density. In real-world engineering applications, turbu-
lent flows are mostly three-dimensional, non-stationary and have variable-density.
Here we propose Taylor-Net, a hybrid model that combines deep neural networks
with numerical Taylor series method for 3D turbulent flow prediction. Across
flows with different density-ratio, our method over 3 orders of magnitude faster
than high-fidelity numerical simulations. It also achieves higher accuracy than
several strong physics-informed deep learning baselines. Most importantly, the
predictions of our Taylor-Net pertain consistent physical characteristics including
mass conservation, and turbulent energy spectrum.

1 INTRODUCTION

Modeling the evolution of fluid flow is critical to climate science, aerospace industry, combustion
and bio-fluid applications, and far more. In most cases, fluid flows are observed in the turbulence
phase in which the flow is composed of a wide range of spatial and temporal scales. Unfortunately,
performing high-fidelity numerical simulations of turbulence, which requires extremely large res-
olutions, is computationally infeasible (Pope, 2000; Sagaut et al., 2013). As a result, turbulence-
closure models are used to reduce the computational complexity of the simulation. These classical
techniques, however, require hand-engineering, are specific to particular flows, and still often do not
produce as accurate results as desired.

Recent approaches to accelerate fluid simulation use physics-informed deep learning: Wiewel et al.
(2019); Xie et al. (2018); Wang et al. (2020a); Kochkov et al. (2021); Li et al. (2020); Mohan et al.
(2020); Beucler et al. (2019); Wu et al. (2020); Mohan et al. (2019); Kim & Lee (2020); Fang
et al. (2018); Font et al. (2021). However, current methods still rely on simplifying assumptions in
Navier-Stokes equations to make the problem more tractable, such as working on two-dimensional
data, studying stationary flows, using low-resolution data, or asserting uniform density. These as-
sumptions dramatically limit the applicability of these methods to real-world turbulent flows.

In contrast, we tackle the general case of predicting three-dimensional, non-stationary variable-
density (VD) turbulent flow used in engineering applications. In such flows, the statistical features of
the turbulence are changing over time. Specifically, higher and lower-density fluids within the flow
mix, and the turbulent kinetic energy of the flow decays. From a machine learning perspective, this
causes covariate shift when splitting train-test data across time, which leads to poor generalization.
In addition, in VD flows, the density field is considered as a variable rather than a constant and its
behaviour needs to be captured separately than the velocity field.
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We consider two type of homogeneous variable-density turbulence (HVDT) Aslangil et al. (2020c)
flow with different density-ratio in response to buoyant forces. The input and output of our model
is a 4-dimensional vector field consisting of 3 velocity components v = (u, v, w) and a density
component ρ which vary in time and space. Since the flow evolution is highly coupled with the
density and velocity fields the momentum p = ρv plays a larger role in the governing equations
than velocity. Hence, we find that predicting momentum and density and then computing velocity
v = p/ρ is more stable than the predicting velocity directly.

Our model is a hybrid model which uses deep learning to learn the remainder of the Taylor series.
We predict the future time steps of the flow with the nth-order Taylor series approximation fit to the
past data. The deep learning model takes as input past time steps of flow and the output is added
to the prediction from Taylor approximation. We use a U-net encoder-decoder architecture shown
to be effective for dynamics prediction (de Bezenac et al., 2018; Wang et al., 2020a;b). We find
that learning the Taylor remainder can dramatically reduce the error of the prediction, compared to
learning the future momentum and density directly.

In summary, our contributions include,

• Taylor-Net: first deep learning method to predict variable-density three-dimensional turbu-
lent flows, by combining Taylor series approximation and U-net.

• Significantly improved accuracy and physical consistency over competitive baselines on
more general (e.g. non-stationary and anisotropic VD turbulence) fluid dynamics,

• Theoretical analysis of the interplay between forecasting horizon, step size, and the order
of Taylor approximation.

2 METHODS

2.1 BACKGROUND IN VARIABLE DENSITY TURBULENCE

Simulating 3D variable-density (VD) turbulent fluids has a broad impact in many important en-
gineering applications such as in high-speed combustion, and high-energy-density processes like
inertial confinement fusion (Aslangil et al., 2019; 2020b;c; Saenz et al., 2021). The readers are
referred to the comprehensive review Livescu (2020) for more details.

The VD turbulence emerges from the mixing of two fluids with different densities. Using the
Einstein summation convention, the governing equations of this physical system are:
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where ρ is the whole density field, ui is the whole velocity field in direction i, p is the pressure, gi is
the gravity in direction i and the stress tensor is assumed Newtonian, τij = (ρ/Re0)( ∂ui
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δij). Unlike uniform density flows whose velocity is divergence-free, the velocity divergence

in VD turbulence is none-zero and can be written as:

∂ui
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= − 1

Re0Sc

∂ρ
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The non-dimensional parameters are the computational Reynolds number, Re0, Schmidt num-
ber, Sc, and Froude number, Fr, defined in (Aslangil et al., 2020c). In addition, in VD mixing
problems, the density contrast between the two mixing fluids is defined by an Atwood number
A = (ρh−ρl)/(ρh +ρl) where ρh and ρl are the heavy and light fluids density values, respectively.
We generate two datasets using HVDT Direct Numerical Simulation (DNS) in a triply periodic do-
main [(2π)3] with a 643 resolution, with A = 0.05 and A = 0.75, whose Re0 values are 100
and Sc and Fr are both unity. The prediction task is to forecast the future density and velocity
field given past data sequences. The homogeneity property of HVDT means the flow is statistically
space-translation invariant. It is also notable that HVDT flow is non-stationary. That is, in con-
trast to space translations, time translations do alter the flow. In HVDT, the spatial homogeneity
allows us to isolate the VD mixing problem from layer edges and inhomogeneities. Aslangil et al.
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Figure 1: Diagram of the Taylor-Net-nmethod. First, the model computes the nth-order polynomial
fit, i.e., Taylor approximation with it uses to approximate x̃t+1 = T (x1:t) . The U-net predicts the
Taylor remainder xt+1 = Rθ(x1:t). For the output we take the sum (ρt+1,pt+1) = xt+1 =
xt+1 + x̃t+1 from which we compute the velocity vt+1 = pt+1/ρt+1.

(2019; 2020c) has connected the idealized homogeneous VD flow to the real applications such as
to the buoyancy-driven Rayleigh-Taylor Instability (Rayleigh, 1884; Taylor, 1950) under constant
and variable-acceleration histories (Aslangil et al., 2016; 2020a), shock-driven Richtmyer–Meshkov
Instability (Richtmyer, 1960; Meshkov, 1969), and VD mixing layers (Baltzer & Livescu, 2020).

2.2 TAYLOR-NET: LEARNING TAYLOR SERIES REMAINDER WITH DEEP NETS

We employ a hybrid method which combines Taylor approximation and a U-net to learn the Taylor
remainder. Note that our method does not explicitly use any part of the Navier-Stokes equations.
The high-level structure of our model is illustrated in Figure 1.

Taylor Approximation Given input data x−t, . . . , x0, we can interpolate the n-th order polyno-
mial fit to the data where n ≤ t. Let pn(t) = a0 + a1t + . . . ant

n. The coefficients of pn can be
determined by the inverse of the Vandermonde matrix x−n

...
x0


 1 0 . . . 0

...
...

. . .
...

1 n . . . nn


−1

=

 a0
...
an


Then the n-th order Taylor approximation is

x̂1 = Tn(x−n, . . . , x0) = pn(1) =

0∑
i=−n

xi

(
n

−i

)
(−1)i+1 (3)

For n = 2, this yields x−2 − 3x−1 + 3x0 and for n = 1 this gives −x−1 + 2x0.

U-net The U-net encoder-decoder architecture has been shown to be effective for dynamics predic-
tion (de Bezenac et al., 2018; Wang et al., 2020a;b). We use a 9 layer-U-net with 3 down-sampling
convolutional layers with stride 2, followed by 2 convolutional layers which preserve the dimen-
sion, followed by 3 up-sampling transposed convolution layers which repeat the sizes of the down-
sampling layers in repeat order. Layers of the same size are directly connected by skip connections.
There is one final convolutional output layer which shrinks the channel dimension to the size of the
output.

Density and Momentum Features Our goal is to predict both the density field ρ and velocity
field v. We find our model performs better when we use density and momentum p as input and
output features instead and compute v = p/ρ. We hypothesize this is because the momentum
plays a larger roll in the defining equations (1). To solve these equations using DNS for velocity,
it would be necessary to repeatedly multiply the density and velocity and then divide by density.
These products and quotients are somewhat difficult for the neural network to approximate, and thus
learning is improved by using momentum features.
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Figure 2: Comparison of our model versus several baselines across 3 metrics for p prediction:
RMSE, Mass Conservation, and Energy Spectrum. Our errors grow more slowly than others across
the forecasting horizon. The flow predicted by our model has an energy spectrum closer to the truth.

Periodic Convolution Since the input and output spatial domain is periodic, we implement U-net
using periodic 3D convolutions. Consider input tensor x of size 643 and kernel φ of size (2c+ 1)3.
We index the kernel symmetrically about (0, 0, 0). We define periodic convolution as

ym,n,p =

c,c,c∑
i=−c,j=−c,k=−c

φi,j,kxm−i,n−j,p−k

where we take the indices of x as i = i mod 64. This is implemented using the “circular” padding
mode of the PyTorch conv3D function.

Theoretical Analysis on Taylor Order Although higher order Taylor approximations achieve
better fit over the short-term, they also diverge faster in the long term, a fact we see reflected in our
experiments. Thus, the optimal order of n represents a trade-off. The proof is deferred to Supp.

Proposition 2.1. Assume the true time series |xt| ≤ C is bounded for all t. For almost all values
x−n, . . . , x0, the iterated n-th order Taylor progression xi+1 = Tn(xi−n, . . . , xi) diverges and the
rate of divergence is Θ(in).

3 EXPERIMENTS

Our turbulent datasets contain flows with two different Atwood numbers. We benchmark the perfor-
mance of different methods w.r.t three metrics: Root Mean Square Error (RMSE), Energey Spectrum
Error (ESE) and Mass Conservation. We compare with SoTA baselines for turbulent flow prediction
including U-Net, TF-Net (Wang et al., 2020a), and Fourier Neural Operator (FNO) (Li et al., 2020).

Table 1: Parameters number and run time comparison

Models DNS Unet TF-Net FNO TaylorNet

# params (1e7) — 1.587 2.528 0.083 1.587

Runtime (s) ≈ 100 0.0407 0.0986 0.0478 0.0404

Table 1 shows the parameter counts and
run times of different models on Dataset
1. Previous state-of-arts deep learn-
ing models consistently fail to outper-
form simple numerical approximations.
Our combined method of numerical and
deep learning has the best performance and shows a great improvement in comparison with numer-
ical approximations.
Figure 2 shows the performance comparison for (a) RMSE (b) Mass-Conservation and (c) energy
spectrum at the 20th prediction step. As noted earlier, HVDT flow is a non-stationary flow even at
later times, so the eddy turnover time is not a constant during the flow evolution. For comparison,
the eddy turnover time at the beginning of the training data is ≈ 6 prediction steps, but at the end
of the test data set, eddy turnover time increases to ≈ 30 prediction steps. Taylor-Net-n denotes
n-th order Taylor-Net. Taylor-Net has lower RMSE compared to all other methods including classic
Taylor expansions. In terms of Mass Conservation loss, Taylor-Net outperforms all ML models,
but is not as good as Taylor expansion. For ESE based on total momentum, Taylor-Net’s largest
advantage is in small-scale motion prediction (at large wave numbers) which is a great challenge for
many ML turbulence models. Figure 3 visualizes the Taylor-Net1 predictions on Dataset 2 for 30
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Figure 3: Prediction visualization for momentum field over 30 time steps (≈ .2 eddy-turnover times).
Comparison between Taylor-Net1 and ground truth shows our hybrid method can capture the small
scale dynamics.

steps ahead forecasting. For each frame, we pick only the momentum field along x-axis and cast 3
surfaces of the data cube to xy, yz, zx planes.

4 CONCLUSION

We apply deep learning for the first time to variable-density and non-stationary turbulent flow. This
creates unique challenges for learning, which we address with a hybrid model which predicts the
Taylor remainder of future time steps. We achieve higher accuracy than several strong baselines.
A limitation of our model is that it does not show significant improvement for highly mixed or
stationary flows. Future work includes larger resolution data and different Reynolds number flows.
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A APPENDIX

A.1 THEOREM PROOFS

Proof. Define x̂i for i ≥ −n inductively as follows. Set x̂i = xi for i < 0. For i ≤ 0, let pi be the
n-th order polynomial such that pi(i − k) = x̂i−k for 0 ≤ k ≤ n. Then set x̂i+1 = pi(i + 1) =
Tn(x̂i−n, . . . , x̂i). Note that pi is uniquely determined by any n+1 points, and thus pi = pi+1. Thus
denoting p = pi for all i, we have x̂i = p(i). The lead term of p(i) is in times a linear combination
of x−n, . . . , x0 which is non-zero for almost all values of x−n, . . . , x0. Since we assume the true
values of the time series are bounded the error of polynomial expansion will grow asymptotically as
in.

A.2 EXPERIMENT SET UP

Datasets The 3 datasets for our experiments are buoyancy-driven homogeneous variable-density
turbulence (HVDT) simulated at different Atwood numbers. In each dataset, each frame has 4
channels, which are density and velocity along 3 axes. The DNS data is generated by using petascale
variable-density version of the CFDNS code (Livescu & Ristorcelli, 2007; Aslangil et al., 2020c).
The code uses the variable time step third order Adams-Bashforth-Moulton scheme, coupled with a
fractional time method for time advancement, and the spatial derivatives are evaluated using Fourier
transforms.
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For each dataset, we use a sliding window approach to generate samples which contain sequences
of data frames. The detailed information of 3 datasets is listed below:

• Dataset 1: Atwood number = 0.75;

• Dataset 1b: Atwood number = 0.75, different random initial condition;

• Dataset 2: Atwood number = 0.05.

Baselines We compare our model with several state-of-the-art baselines which have shown great
performance on 2D turbulent flow prediction.

• U-Net (Ronneberger et al., 2015): A fully convolutional net work developed for image
segmentation, also used for video prediction.

• TF-Net (Wang et al., 2020a): A hybrid deep learning framework based on multi-level
spectral decomposition of turbulent flow.

• Fourier Neural Operator (FNO): (Li et al., 2020): A novel neural operator
based on Fourier transformation for learning partial differential equations. In Li et al.
(2020), FNO is applied to predict a single-channel vorticity field. For 3D HVDT, we re-
quire all four channels, which we concatenate before inputting to the model.

Evaluation Metrics We use Root Mean Square Error (RMSE) to measure the pixel-wise predic-
tion performance. We also use the Energy Spectrum Error (ESE) to measure the turbulence kinetic
energy of the predictions. (See Wang et al. (2020a) for details.) To handle variable-density, we
use momentum instead of velocity to calculate the spectrum as it is suggested in Aslangil et al.
(2020c). Another metric is Mass Conservation. For simulated variable-density datasets, the mass-
conservation equation holds: ∂ρui

∂xi
= −∂ρ∂t . We calculate the divergence of momentum using the

model predicted momentum p and compare to the time derivative of the ground truth density. The
time derivative is approximated by the finite difference over one time step of our data, which is
approximately 2 orders of magnitude larger than the DNS time step. Hence, we incur some error
which is visible even for our ground truth data.

Trade-off between Interval and Precision To understand why Taylor approximation improved
performance so significantly relative to strong baselines such as Fourier Neural Operators (Li et al.,
2020), we varied the input step size and found that higher order Taylor approximations are primarily
helpful when the step size in numerical differentiation between inputs is small. As the step size
between inputs increases, the additional benefit of higher order Taylor approximation decreases. We
also find that Taylor approximation is more helpful for the truly turbulent and non-stationary chaotic
data we consider relative to the more structured, cyclic, and stationary data such as Rayleigh-Bénard
Convection or isotropic stationary homogeneous turbulence considered in earlier works.

Table 3 shows the trade-off between the magnitude of time intervals and the precision of prediction.
To control the variables, we fix the input length to 15 frames and predict 20 frames for ∆t = 1, 10
frames for ∆t = 2 and 5 frames for ∆t = 4. This experiment is done on Dataset 1. All the RMSE
losses are based on the average of the predicted frames.

Table 2: Interval vs Precision

U-net Taylor 1 Taylor-Net1 Taylor 2 Taylor-Net2
RMSE ∆t = 1 step 0.2713 0.03732 0.03036 0.01752 0.01548
RMSE ∆t = 2 step 0.07167 0.04146 0.02603 0.02176 0.01691
RMSE ∆t = 4 step 0.05096 0.06918 0.0232 0.03305 0.02656

It is shown that the performance of U-net grows while the performance of Taylor approximation
declines as the magnitude of time interval grows. The performance of higher order Taylor approx-
imation declines faster, which makes sense because the error of nth order Taylor approximation
is proportional to O(∆tn). Lower order Taylor approximation, in contrast, works better when the
interval is large.
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A.3 ADDITIONAL RESULTS

Zero Padding In Figure 4, we perform an ablative study with periodic padding. Instead of periodic
padding, we use zero padding. We find that the mass conservation is much worse.

Figure 4: Comparison of our model with zero padding versus several baselines across 3 metrics for
p prediction: RMSE, Mass Conservation, and Energy Spectrum.

Train on Dataset 1 and Test on Dataset 1b Instead of separating our train and test set in time,
in this experiment, we instead vary the random seed which determines the initial conditions of our
simulation. The results, shown in Figure 5, show similar errors to the other test set indicating
generalizability of our model.

Figure 5: Train on Dataset 1 and test on Dataset 1b

Other Visualizations In figure 6, we include the full version of Figure 3 which displays visual-
izations of all of our baselines, our models, and the ground truth.

Velocity and Density Visualizations In Figure 7 and Figure 8 we show the predicted velocity and
density fields of Taylor-Net1 versus the ground truth.
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Figure 6: Visualizations of all of our baselines, our models, and the ground truth for the predicted
momentum field at different points along the forecasting horizon.
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Figure 7: Visualization of predicted velocity field magnitude versus the ground truth.

Figure 8: Visualization of predicted density field versus the ground truth.
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