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ABSTRACT

We propose a model to directly predict the steady-state flow field for a given geom-
etry setup. The setup is an Eulerian representation of the fluid flow as a meshed
domain. We introduce a graph network architecture to process the mesh-space
simulation as a graph. The benefit of our model is a strong understanding of the
global physical system, while being able to explore the local structure. This is es-
sential to perform direct prediction and is thus superior to other existing methods.

1 INTRODUCTION

Using deep learning to model physical problems has become an area of great research interest.
Learning the physical equations of a systems can be used as model to control robots (Hoppe et al.,
2019) or to solve numerical problems (Raissi, 2018; Sirignano & Spiliopoulos, 2018). In case of
computational fluid dynamics (CFD), learned simulations can reduce the computational cost and
thus improve the engineering process of, in our case, hydraulic components. During the development
process of hydraulic machinery, a large amount of designs has to be simulated and evaluated with
respect to their fluid dynamical properties. To speed up this process, stationary simulations are often
preferred in the early stage of the design process. For this reason, we propose a method, which
enables fast predictions of the fluid dynamics, focusing on predicting the steady-state flow field.

In recent years, deep learning approaches (Tompson et al., 2017; Xie et al., 2018) have shown
promising results inferring fluid flow simulations. Data-driven approaches are used to learn the
underlying physical behavior of the fluid dynamics from CFD simulations. A generalized solution
of the fluid dynamics should be learned to infer the flow field for new problem setups.

A major difference of the algorithms is the way the fluid domain is represented. Modeling complex
physical systems in general requires a discretized simulation domain. Mesh-based representations
are a common choice to solve the underlying partial differential equations (PDEs) of the system, e.g.
the Navier-Stokes equations for CFD. The mesh can be structured as a Cartesian grid to store the flow
field. So image processing algorithms can be applied (Guo et al., 2016; Thuerey et al., 2018), which
has its limitations for complex structured geometries. In common numerical solvers the flow field is
represented as a mesh of arbitrary polygons, which is widely used in mechanical engineering. With
the success of graph neural networks (Battaglia et al., 2018), it is possible to use deep learning for
modeling such physical problems. Further, the fluid can be treated as particle-based representation,
which is common used in smoothed particle hydrodynamics (SPH) and position based fluids (PBF)
for simulating free-surface liquids. Particles can be processed as a point cloud. In Schenck & Fox
(2018), Ummenhofer et al. (2020) and Sanchez-Gonzalez et al. (2020), this representation is used to
model the highly dynamic movement of fluids and the interaction with rigid objects.

In our work, we focus on mesh-based representation on an irregular grid. The combination of a
differentiable solver with graph convolutions (GCN) (Kipf & Welling, 2017) is used in De Avila
Belbute-Peres et al. (2020) for high-resolution predictions on the meshed domain around airfoils.
Our method comes without an additional solver to be more independent from domain knowledge
which is necessary for the solver. Pfaff et al. (2021) provides MESHGRAPHNETS, which is espe-
cially designed for predicting the dynamical states of the system over time. In section 4 we show,
that our method is better suited for steady-state predictions.
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Figure 1: The model architecture to predict the flow field, given the node features of shapeNvˆF v .
Top row: EDGECONV layers as local feature extractors. Top row: Pooling, to form an 1D global
descriptor. Concatenation of the local and global descriptor and transformation by the decoder.
‘: concatenation.

2 MODEL

The task is a steady-state prediction, so the model should learn to directly predict the final steady-
state velocity and pressure fields, given only information about structure of the meshed domain and
additional domain information, i.e. node positions ui and additional quantities ni, respectively. We
propose a graph neural network model related to Dynamic Graph CNN (DGCNN) (Wang et al.,
2019). Figure 1 shows the visual scheme of our model architecture.

2.1 EDGE FUNCTION

The meshed domain can be seen as a bidirectional graph G “ pV,Eq, with nodes V connected by
mesh edges E. Each node i P V contains the mesh-space coordinate ui, as well as quantities ni

describing the domain, e.g. angle of attack, Mach number or the node type to distinguish between
the fluid domain and solid objects like the geometry. In addition, each node is carrying the fluid
dynamical quantities qi, which we want to model. The node feature vector vi “ rui,nis is defined
as the concatenation of the nodes position ui and the quantities ni. The total amount of nodes is
defined by Nv with a node feature vector size of F v . The edge feature vectors eij P E are defined
as eij “ hΘpvi, vjq, where hΘ is a nonlinear function with a set of learnable parameters Θ.

Extraction both local and global features is essential for the task of directly predicting a global field,
since it is necessary to understand the local properties of the mesh as well as its global structure.
Therefore, we are using an edge function called EDGECONV introduced by DGCNN, which is
defined as hΘpvi, vjq “ h̄Θpvi, vj ´ viq. It is implemented as

e1ij “ ReLUpΘ ¨ pvj ´ viq ` φ ¨ viq , v1i “ max
j:pi,jqPE

e1ij , (1)

with Θ and φ implemented as a shared MLP and max as aggregation operation.

The local neighborhood information are captured by pvj ´ viq, which includes the relative displace-
ment vector in mesh space uij “ ui ´ uj and the difference of the local quantities ni. The global
shape structures are captured by the patch center vi including the absolute node position ui and
its quantities ni. The MLP is embedding the feature vector vi to a latent vector of size 128. The
EDGECONV formulation has properties lying between translation-invariance and non-locality. More
details about this model type can be found in Wang et al. (2019).

2.2 ARCHITECTURE

The DGCNN architecture was originally designed for point clouds, using a k-nearest neighbor al-
gorithm to construct the graph. Since the simulation domain is already present as a mesh we rely
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(a) AIRFOIL (b) AIRFOILROT

(c) CHANNEL

Figure 2: Examples of the predicted velocity field in x-direction for all three data sets, each with
the ground truth simulation to the right. The simulation mesh is displayed in the background. For
CHANNEL, the geometry and walls are highlighted in black.

on the graph structure of the mesh instead of recomputing the graph. We use the structure of the
DGCNN architecture to increase the ability of extracting local and global properties as displayed in
Figure 1. The model has L layers of EDGECONV. The outputs of the EDGECONV layers can be seen
as local feature descriptors. Shortcut connections are included to extract multi-scale features. The
features from all EDGECONV layers are concatenated and aggregated by a fully-connected layer.
Then, a global max pooling is used to get the global feature vector of the mesh. Afterwards, the
global feature vector is repeated and concatenated with the local features. At last, the decoder MLP
is transforming the latent features to the desired output pi. Further information about the network
and hyperparameter settings can be found in Section A.1.

3 EXPERIMENTAL SETUP

For our experiments, three data sets with fluid dynamical simulations on two-dimensional meshes are
used. The flow field is represented by the simulation mesh. Each node is holding the fluid dynamical
quantities qi “ rwi, pis, with the velocity in x- and y-direction wi and the pressure pi. All samples
in the data set AIRFOIL are steady-state, compressible, inviscid CFD simulations, performed by
solving the Euler equations. The same simulation conditions apply to data set AIRFOILROT, which
is a modified version of AIRFOIL. The CFD simulations of the data set CHANNEL are performed by
solving the steady-state, incompressible, inviscid case of the Navier-Stokes equations.

The first data set AIRFOIL is taken from Belbute-Peres et al. (2020). The simulations are describing
the flow around the cross-section of a NACA0012 airfoil for varying angle of attacks α and different
Mach numbers m. It includes a single geometry setup, so the mesh is identical for every sample in
the data set. Thus, the simulated quantities qi vary only due to the parameter setting of α and m.
The node feature vectors vi include the node positions ui, the global m and α and the node type,
indicating, whether the node belongs to the airfoil geometry, the fluid domain or the boundary of the
flow field. Since the node positions are the same for every simulation, the model predictions mainly
depend on the parameter setup of α and m. Consequently, it is difficult to show the advantage of
our method to capture local and global structures. This data set is used as a baseline to compare our
method with the results from literature.

A second data AIRFOILROT set is constructed, by rotating the whole simulation domain of AIRFOIL
by the value of α. This can be interpreted as α “ 0, but with a rotated placement of the simulation
mesh and its flow field. Here, α will be discarded from the feature vector, since it is equal for all
samples. Now, the model has to rely more on the geometric structure for predicting the flow field.
All samples in the data set still have the same geometry profile. Nevertheless, the orientation of the
airfoil results in strong variations of the flow field, so the model has to be sensitive in understanding
the geometric structure.
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Table 1: Test root mean square error (RMSE) for all tasks (RMSEˆ10´2).

Method AIRFOIL AIRFOILROT CHANNEL

GCN 1.40 - -
MESHGRAPHNETS 0.95 7.34 13.30
MESHGRAPHNETS (ABS) 0.73 1.28 13.04
MESHGRAPHNETS (ABS+POOL) 1.25 0.99 6.58
Ours 1.40 0.87 5.81

To increase the the requirement of understanding the geometric structure, we generate a third data set
CHANNEL, which is a two-dimensional channel flow. Generic objects like circles, squares, triangles
and rectangle are randomly placed inside the channel. The number of objects varies between one
and three, which results in a large variety of fluid dynamics i.e., various flows, back flows, partial
blockage and small gaps. The feature vector for CHANNEL only consists of the node positions ui

and the node type, i.e. fluid domain, wall or internal object. All samples in CHANNEL are simulated
with the same boundary conditions, so there is no additional information encoded in the feature
vector. Thus, the focus lies on the investigation for the understanding of the geometric structure.
Examples for all three data sets are shown in Figure 2. More details about the data sets are explained
in Section A.2.

4 RESULTS

We compare our approach with two baseline methods, a base GCN and MESHGRAPHNETS (Pfaff
et al., 2021). The results for the base GCN are taken from De Avila Belbute-Peres et al. (2020). They
are only available for the AIRFOIL data set. Then, we use a re-implementation of MESHGRAPH-
NETS for comparison with the data sets studied in this work.

MESHGRAPHNETS was designd for modeling the system dynamics over time. The models spatial
equivariance bias is counteracting the direct prediction of a final flow field. However, the model
can achieve good results for AIRFOIL, but fails to predict the flow field for the other data sets. We
investigate two extensions of MESHGRAPHNETS, indicated by the suffix (ABS) and (ABS+POOL).
First, the absolute positions ui is concatenated to the node features (ABS). Second, we include the
pooling operation for global feature extraction (ABS+POOL). Both extensions are adopted from the
DGCNN architecture and aim to increase the understanding of the global structure. The adapted
model is described more detailed in Section A.3.

The visual results of our method are displayed in Figure 2, showing the predicted and the ground
truth field of the velocity component in x-direction. There is almost no visually noticeable difference
between the predicted and the ground truth flow field. This shows, that our model is able to produce
high-quality predictions. More visual results of the velocity fields are shown in Figure 4.

Table 1 shows the prediction error in terms of RMSE for all five models on the three data sets. In
the simplest data set AIRFOIL, with respect to the complexity of the geometric structure, all models
successfully learn to predict the flow field. As mentioned in Pfaff et al. (2021) MESHGRAPHNETS
outperform the base GCN, which is also the case with our re-implementation. Surprisingly, (ABS)
outperforms all the other methods. In terms of RMSE, our method falls behind, but visually the fluid
dynamics remain nearly identical to the ground truth.

On the richer AIRFOILROT task, MESHGRAPHNETS was unable to obtain a correct prediction of the
flow field. This results in a high RMSE, which is also confirmed by visual investigations. In contrast,
the adapted MESHGRAPHNETS capture enough geometric information to successfully predict the
flow field. This experiment shows the benefit of using both the local displacement and the absolute
node position as features. In this case, our model outperforms the other methods in terms of RMSE.

Beside the velocities and pressure, the flow field of a compressible flow should also be represented
by the density, but AIRFOIL and AIRFOILROT do not provide values for the density. Nevertheless,
including the density as an additional output quantity will increase the complexity of the problem
setup and thus, increase the prediction error slightly. Further, it has to be mentioned, that the test
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set of AIRFOIL and AIRFOILROT is within the Mach number range of the training set. So the test
case is an interpolation task. Since we are not using any additional physical equations or numerical
solvers, our model fails to solve difficult extrapolation tasks as presented in De Avila Belbute-Peres
et al. (2020).

For the most challenging data set CHANNEL, also (ABS) fails. Only (ABS+POOL) and our method
achieve a sufficient low RMSE, but with an improvement of the RMSE with our method. The
same findings are indicated by visual investigations of the predicted flow fields. This experiment
shows, that our method generalizes well to new unseen geometric setups of the channel flow. In this
experiment, both models with a global feature extractor are successful. This shows, that extracting
the global features with the pooling operation is necessary to capture a high level of understanding
of the global geometric structure. Nevertheless, our method is better in terms of model complexity
and processing time, which makes it superior to MESHGRAPHNETS (ABS+POOL).

5 CONCLUSION

We propose a mesh-based method to model the fluid dynamics for an accurate and efficient predic-
tion of steady-state flow fields. The experiments demonstrate the models strong understanding of
the geometric structure. The method is independent of the structure of the simulation domain, being
able to capture highly irregular meshes. Further, our method works well for different kind of sys-
tems, i.e. Eulerian and Navier-Stokes systems. Beside this, we show, that the model does not require
any a-priori domain information, e.g. inflow velocity or material parameters. Thus, the model can
be used for other systems, e.g. viscous fluids or other domains which are represented as field data
like rigid body simulations.
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A APPENDIX

A.1 ADDITIONAL MODEL DETAILS

All MLPs in the EDGECONV layers are using three shared fully-connected layers of size 128. The
two hidden layers come with ReLU activation, followed by a non-activated output layer. The MLPs
in the EDGECONV layers are followed by a BatchNorm (Ioffe & Szegedy, 2015) layer. To aggregate
the features of all EDGECONV layers, a fully-connected layer of size 1024 is used. The decoder MLP
has four fully-connected layers of size (1024, 512, 256, 3) to transform the latent feature vector to
the output shape. We are using L “ 5 EDGECONV layers, which is a good trade-off between model
capacity and computational cost. The whole model consists of 20 fully-connected layers with a total
number of approximately 3.3 million parameters.

We train our model in a supervised fashion using the per-node output features pi from the decoder
with a L2 loss between pi and the corresponding ground truth values pi. A batch size of 2 is chosen
for AIRFOIL and AIRFOILROT. In CHANNEL the number of nodes is smaller compared to the
former data sets, so a batch size of 6 is used. The models are trained on a single RTX 3090 GPU
with the Adam optimizer, using a learning rate of 10´4.
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A.2 DATASET

The simulation domain of AIRFOIL and AIRFOILROT is a two-dimensional, mixed triangular and
quadrilateral mesh with 6648 nodes. The mesh is highly irregular with varying scale of the edge
lengths in different regions of the mesh. The training set is defined by

αtrain “ t´10,´9, . . . , 9, 10u , mtrain “ t0.2, 0.3, 0.35, 0.4, 0.5, 0.55, 0.6, 0.7u .

The test set is defined similar by

αtest “ t´10,´9, . . . , 9, 10u , mtest “ t0.25, 0.45, 0.65u .

The training and test pairs are sampled uniformly from α ˆm. This results in 168 samples for the
training set and 63 samples for the test set, which is split to 32 samples for validation and 31 samples
for the test. The samples from AIRFOIL and AIRFOILROT come with a min-max normalization to
the value range of r´1, 1s separately for each velocity component and the pressure.

The simulation domain of CHANNEL is a two-dimensional, unstructured triangular mesh with an
equal scale of the edge lengths. Depending on shape and number of objects inside the channel,
the number of nodes is variable, but is approximately 1750. This data set has 1000 samples for
training and 150 samples each for validation and test. In CHANNEL, we normalize the samples by
the maximum velocity and the maximum pressure.

The node features used as inputs as well as the outputs are summarized in the following table.

Method inputs vi outputs pi

AIRFOIL ui, ni, m, α wi, pi
AIRFOILROT ui, ni, m wi, pi
CHANNEL ui, ni wi, pi

The inputs are defined by the node position ui, the node type ni, the angle of attacks α and the Mach
numbers m, while the outputs are the velocity in x- and y-direction wi and the pressure pi.

A.3 MESHGRAPHNETS ADAPTION

For the adaption of MESHGRAPHNETS we are following their Encoder-Processor-Decoder architec-
ture, but with a processor adapted by the idea of DGCNN. Instead of EDGECONV layers, message
passing blocks (Battaglia et al., 2018) are used to update node and edge features. Figure 3 shows the
visual scheme of the adapted architecture.

Encoder The edge feature vectors eij P E are a concatenation of the relative displacement vector
in mesh space uij “ ui ´ uj and its norm |uij | with an edge feature vector size of F e and a total
amount of edges Ne. The node feature vectors vi P V is defined by the quantities ni and can be
extended by other features with a node feature vector size of F v a total number of nodes Nv . In the
encoder, MLPs εM and εV are used to embed the feature vectors eij and vi, respectively to latent
vectors of the size 128.

Processor The processor uses L identical message passing blocks to update the edges e and nodes v
into embeddings e1 and v1 respectively by

e1ij Ð fM peij , vi, vjq , v1i Ð fV pvi,
ÿ

j

e1ijq , (2)

where fM and fV are implemented as MLPs with residual connections. The MLPs are using the
concatenated node and edge feature vectors as input.

Decoder Finally, the decoder MLP is transforming the latent node features from the last processor
block into the output features. More details about this model type can be found in Sanchez-Gonzalez
et al. (2020) and Pfaff et al. (2021).

Local and global Features EDGECONV captures both the local neighborhood information pvj´viq

and the global shape structures by vi. Therefore, we are adapting the node features by using a con-
catenation of the quantities ni and the absolute node position ui. This node features help to capture
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Figure 3: Adapted model architecture using message passing block with local and global descriptor.
‘: concatenation.

the global shape structure, while the edge features capture the local neighborhood information. This
adapted version is called MESHGRAPHNETS (ABS). Further, we adopt the structure of the DGCNN
architecture to increase the ability of extracting local and global properties. Instead of stacking L
message passing block, all the message passing blocks are concatenated to calculate the global fea-
ture vector. Then, again the local and global features are concatenated and transformed to the desired
output by the decoder MLP. This adapted version is called MESHGRAPHNETS (ABS+POOL).

All MLPS in the encoder, message passing blocks and decoder are using three fully-connected layers
of size 128. The two hidden layers come with ReLU activation, followed by a non-activated output
layer. The MLPs except the decoder are followed by a LayerNorm (Ba et al., 2016) layer. Similar
to our method, we are using L “ 5 message passing block.
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A.4 ADDITIONAL RESULTS

(a) AIRFOIL (b) AIRFOILROT

(c) AIRFOIL (d) AIRFOILROT

(e) CHANNEL

(f) CHANNEL

(g) CHANNEL

Figure 4: Additional examples of the predicted velocity field in x-direction for all three data sets,
each with the ground truth simulation to the right.
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