Published as a workshop paper at ICLR 2021

MULTI-CHANNEL PARTICLE PHYSICS DETECTOR SIMULATION WITH
GRAPH VARIATIONAL AUTOENCODERS

Ali Hariri * Darya Dyachkova
American University of Beirut Minerva Schools at KGI
Sergei Gleyzer

University of Alabama

ABSTRACT

Accurate and fast simulation of particle physics processes is crucial for the high-
energy physics community. Simulating particle interactions with the detector is
both time consuming and computationally expensive. With its proton-proton col-
lision energy of 13 TeV, the Large Hadron Collider is uniquely positioned to detect
and measure the rare phenomena that can shape our knowledge of new interac-
tions. The High-Luminosity Large Hadron Collider (HL-LHC) upgrade will put
a significant strain on the computing infrastructure and budget due to increased
event rate and levels of pile-up. Simulation of high-energy physics collisions
needs to be significantly faster without sacrificing the physics accuracy. Machine
learning approaches can offer faster solutions, while maintaining a high level of
fidelity. We introduce a graph generative model that provides effective reconstruc-
tion of LHC events on the level of calorimeter deposits and tracks, paving the way
for full detector level fast simulation.

1 INTRODUCTION

Simulations of particle interactions are crucial for particle physics research. The Large Hadron
Collider is delivering the highest energy proton-proton collisions ever recorded in the laboratory,
permitting a detailed exploration of elementary particle physics. It is uniquely positioned to detect
and measure the rare phenomena that can shape our knowledge of new interactions and possibly
resolve the present tensions of the Standard Model. LHC experiments have already observed the
long-sought after Higgs boson |CMS Collaboration| (2012); [ATLAS Collaboration| (2012), and it is
hoped that they will further reveal evidence for new physics beyond the Standard Model.

After the next LHC run and the ensuing shutdown, the LHC will begin its ‘High-Luminosity’ (HL-
LHC) operations around 2027 |Apollinari et al.|(2015), targeting a five-fold increase in yearly data
collection, with an additional ten years of operation. Advanced computational paradigms, including
advanced machine learning techniques and dedicated hardware that accelerates their application for
detector simulation and event reconstruction, will be necessary to attain the main physics goals of the
HL-LHC Albertsson et al.| (2018)) due to significant challenges posed by increased levels of pile-up
and the rarity of sought-after signals.

Probabilistically, the reconstruction of collision events is modeled using the equation:

p(r-particles|d) = f R(r-particles|particles) H (particles|partons) 0
X P(partons|@) dparticles dpartons

where P is the probability density of observing a set of reconstructed objects given a point in the
parameter space, H refers to the hadronization process where mapping from the parton to the particle
level occurs and R(particles) is the detector response |Gleyzer et al.| (2016). The latter is estimated
using Monte Carlo-based full simulation or parametric methods. This poses a computational bottle-
neck for current simulation frameworks that model collision events using Monte Carlo methods. The

*email: aah71@mail.aub.edu

Published as a workshop paper at ICLR 2021

Combined layers Track ECAL HCAL

,yz’
B N

Figure 1: The visualization of the energy deposits in ECAL and HCAL calorimeter layers for two
distinct #thar events (top and bottom). The tracks layer shows the tracks projected to the ECAL
surface. The leftmost image is the combined one from all the three layers.

current forward simulation modelsBrun et al| (1978) are difficult to parallelize and do not scale well
with the rising computational complexity. Parametrized models such as [de Favereau et al.| (2014)
are faster but suffer from a loss in fidelity compared to full simulation which limits their utility.

2 DaAta AND PRE-PROCESSING

For the study, we use a representative sample of top quark pair events generated with Pythia 6 and
available on the CERN Open Data Portal|cms| The input data is processed by following the recipe in
Andrews et al.|(2020). The input data contains a total of 30000 samples, each containing 3 channels:
Tracks, Electromagnetic Calorimeter (ECAL) and Hadronic Calorimeter (HCAL), respectively. To
visualize the events in different sub-detectors, we display them on a mesh with 85 x 85 segmentation
(Fig. [I), shown at ECAL resolution.

We pre-process the data by selecting the non-zero hit locations within the array, providing their
respective x and y locations as per the calorimeter segmentation. Afterwards, we concatenate the
X,y locations with their corresponding reconstructed hit energy at that location. At this stage, each
sample has the shape Nx3 where N is the number of non-zero hits within the detector. In the next
section we show that N is also the number of nodes within one graph representing a jet.

3 GRrAPH REPRESENTATION OF EVENTS

A graph is denoted by G = (V, E, A) where V is the set of vertices composing the graph, E the set of
edges connecting these vertices, and A being an N x N adjacency matrix describing the relationship
between the nodes, where N is the total number of nodes in the graph. Associated with each vertex
V is a set of features describing it.

We consider particle hits within a detector to be interconnected nodes in a graph. Therefore, each
event is characterized by a set of nodes whose features include x-y locations in 2D space in addition
to their energies. We use the k-nearest neighbours algorithm in 2D space to connect the nodes,
i.e each node is connected by an edge to k-nodes that are closest in terms of Euclidean distance
given by /(x — x;)2 + (y — ;)* with x; and y; referring to this node’s coordinates. To learn the graph
properties of these showers we develop a Graph VAE architecture whose encoder embeds the node
features into latent space dimensions.

After defining the graph topology and node features, we also need to address the graph embeddings.
We use GraphSAGE |[Hamilton et al.| (2017)), an inductive learning framework that assumes nodes

Published as a workshop paper at ICLR 2021

Input arrays MINCUT
(125x125) POOLING

Reconstructed Jets
(Batch size,
1000,3

POOLING
LINEAR LINEAR

Reparametrize

<

UPSAMPLE ﬁ% UPSAMPLE % LINEAR

Figure 2: Model architecture of the Graph Variational Autoencoder showing GraphSAGE layers and
pooling blocks

TR 7¢ TER T .,mmm.camiq:w;n,nmmm R

Tracks ECAL HCAL
- Tt e s
= wl fae '
in in %— 1 in
. -t
LR RRT
3 N

&n;¢mmmlmna Zo e L] nnnﬂ;;;mmmmm IEEEE I¢‘W o o o

Figure 3: Original simulated top quark initiated jet (left) compared to the GVAE-reconstructed jet
(bottom) in each of the three channels. The energy range is log-scaled for better visualization.

within the same neighbourhood to have similar embeddings and proceed by aggregating information
from higher-level neighbourhoods. Hence, we use dense GraphSAGE layers in a graph variational
encoder-decoder model that learns to reconstruct graphs from a learned compressed representation
in latent space. The latter is obtained at the level of the encoder by means of spectral clustering
of the graph’s nodes with similar latent features. More specifically, the graph is compressed using
the MinCut pooling technique inspired by [Bianchi et al.| (2010). Finally, the decoder upsamples the
feature and adjacency matrices as follows:

X' = SXPaoled;Arec — SAPooledST (2)

where S is a learned cluster assignment matrix similar to the one defined in Bianchi et al.|(2010). A
pictorial representation of our model is given in Figure[2]

4 REesuLTs

to reconstruct top quark-initiated jets. A clear visualization of our results is shown in Figure[3| where
the fully-simulated events are compared to their corresponding GVAE reconstruction. Our results
indicate a high-level of agreement in 2D hit distributions and their respective energy scales. Finally,
several trial runs showed an average inference time of 0.13088 seconds for GVAE reconstruction on
a batch size of 64, orders of magnitude below typical full reconstruction times for simulation of top
events, while maintaining a very high level of fidelity.

Our Graph Variational Autoencoder was trained on a Tesla T4 GPU on Google Colab[Bisong|(2019)

Published as a workshop paper at ICLR 2021

4.1 Murri-GPU ScaLING

We next investigate how the GVAE model scales on multiple GPU devices. We first profile the
code to monitor the process load taking place in CPUs and GPUs. To avoid a potential data-loading
bottleneck, we opted to generate batches of graphs on the spot in the CPU prior to sending them to
the training model on the GPU. This change has reduced the training time by 50%. Having trained
on a single Tesla V100 GPU as a baseline, we proceeded by scaling the model using the Horovod
library |Sergeev & Del Balso| (2018)), a deep learning library for distributed training of deep learning
models.

We train our GVAE model on a cluster using Volta V100 GPUs having 16 GB of RAM. Following
profiling and code optimization for enhanced CPU performance, we scale the training on multiple
GPUs using the Horovod library. To get a baseline performance, we compare the results to the
training on a single GPU with a batch size of 32 for 100 iterations, i.e a total of 3200 graph samples
(Figure).

Horovod Weak Scaling on p GPUs with p={1,2,3,4} for 100 iterations on NVIDIA DGX V100
GPU Processes execution time (in seconds) for 3200 samples
One Two Three Four
Mean Execution 69.34 85.48 94.96 101.54
Time (s)
Stddev Execution 3.05 1.85 2.26 1.00
Time (s)
Speedup 1.00 1.62 2.19 2.73
Parallelization 1.00 0.81 0.71 0.68
efficiency

Figure 4: Table showing scaling efficiency

Throughout scaling we notice an increase in the performance with an increase in the GPU devices
used. To calculate the resulting speedup from scaling, we take as reference the Mean Execution
Time (MET) resulting from training on one GPU. For Ngpys = 2, the mean execution time is 85.48
seconds. Bearing in mind that we are training twice the amount of data overall, we get MET per
GPU = 42.74 seconds. The resulting speedup for Ngpys = 2 is given by

METsingleGPU _ 69.34
MET perGPUusingNgpys T 4274

= 1.62 3)

Applying the same speedup calculation, going from 2 to 4 GPUs, we get speedups of 1.62, 2.19
and 2.73, respectively. Therefore, we conclude that our model scales well on multiple GPUs using
Horovod, which is useful for future work and similar graph generative models. However, there is
still some loss in scaling performance due to parallelization efficiency that can be explained by an
inefficient communication between the GPUs once parallel batch training has been done. This issue
can be overcome by programming the kernel directly. Further optimization could be deferred to
future work.

5 CONCLUSION

In this proof-of-concept work we shed light on the potential of graph-based architectures for learning
the representation of high-energy collision events. Graph neural networks tackle the issue of data
sparsity in particle detectors by allowing the model to directly learn from the hits deposited in the
detector. Through spatial convolution our model was able to learn the interactions between hits
in the detector and we sequentially compressed it by means of mincut pooling to preserve the most
representative nodes in latent space. Finally, a trained decoder can upsample the compressed vectors
to the original reconstruction, leading to a proof-of-concept simulator. We additionally benchmarked
our model on single and multiple gpus, demonstrating low latency times and efficient multi-gpu
scaling performance.

Published as a workshop paper at ICLR 2021

ACKNOWLEDGMENTS

We would like to thank Michael Andrews, Bjorn Burkle, Christian Hundt and Giuseppe Fiameni for
useful discussions. We thank them for their expertise and support. Ali Hariri was a participant in the
Google Summer of Code 2020 Program. We additionally thank NVIDIA, Helmholtz Association
and Mozhgan Kabiri Chimeh for support during a gpu hackathon that enabled us to study multi-gpu
scaling.

REFERENCES
CERN Open Data Portal. http://opendata.cern.ch.

K. Albertsson et al. Machine Learning in High Energy Physics Community White Paper. arXiv
e-prints, Jul 2018.

M. Andrews, M. Paulini, S. Gleyzer, and B. Poczos. End-to-end physics event classification with the
cms open data: Applying image-based deep learning on detector data to directly classify collision
events at the lhc. Computing and Software for Big Science, 4(1):1-14, 2020.

G Apollinari, I Béjar Alonso, O Briining, M Lamont, and L. Rossi. High-Luminosity Large Hadron
Collider (HL-LHC) : Preliminary Design Report. CERN-2015-005, FERMILAB-DESIGN-2015-
02, 2015. doi: 10.5170/CERN-2015-005,10.2172/1365580.

ATLAS Collaboration. Observation of a new particle in the search for the Standard Model Higgs
boson with the ATLAS detector at the LHC. Physics Letters B, 716(1):1-29, Sep 2012. doi:
10.1016/j.physletb.2012.08.020.

F. Bianchi, D. Grattarola, and C. Alippi. Spectral clustering with graph neural networks for graph
pooling. Proceedings of Machine Learning Research, 2010.

Ekaba Bisong. Google Colaboratory, pp. 59-64. 09 2019. ISBN 978-1-4842-4469-2. doi: 10.1007/
978-1-4842-4470-8_7.

R. Brun, R. Hagelberg, M. Hansroul, and J. Lassalle. Simulation program for particle physics
experiments, geant : user guide and reference manual. Report Number CERN-DD-78-2, 1978.

CMS Collaboration. Observation of a new boson at a mass of 125 GeV with the CMS experiment
at the LHC. Physics Letters B, 716(1):30-61, Sep 2012. doi: 10.1016/j.physletb.2012.08.021.

J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaitre, A. Mertens, and M. Selvaggi.
Delphes 3, a modular framework for fast simulation of a generic collider experiment. Journal of
High Energy Physics, 2014(2), 57., 2014.

S. Gleyzer, Prosper Orlando R. D., S. H.B., Sekmen, and O.A. Zapata. Physics at tev colliders.
new physics working group report. contribution 15. falcon: towards an ultra fast non-parametric
detector simulator. arXiv preprint arXiv:1203.1488, 2016.

W. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on large graphs. Confer-
ence Notes from 31st Conference on Neural Information Processing Systems, 2017.

Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in tensor-
flow. arXiv preprint arXiv:1802.05799, 2018.

	Introduction
	Data and Pre-Processing
	Graph Representation of Events
	Results
	Multi-GPU Scaling

	Conclusion

