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Figure 1: CNN-based volumetric data reconstruction from two-dimensional information.

ABSTRACT
We have recently encountered the tremendous improvement in computational
power, which in turn causes insufficient utilization of big numerical data in a
wide range of science and engineering due to storage and data-transfer limita-
tions. Hence, of particular interest here is how we can handle big data, which are
governed by strong chaoticity and nonlinearities, in an efficient manner. We here
consider a supervised use of convolutional neural networks (CNNs) to achieve ef-
ficient data handling. The present CNN reconstructs three-dimensional (volumet-
ric) data from limited two-dimensional information. As an example, a fluid flow
around a square cylinder at ReD = 300, which contains strong three-dimensional
complexities, is considered. Our demonstration shows that the present framework
can successfully estimate the three-dimensional flows from a few input sections,
which eventually enables us to keep only sectional input data to obtain the whole
information. We also propose a combination with an adaptive-sampling-based
super-resolution analysis toward more effective data saving.

1 INTRODUCTION
The exponential growth in computing power is ongoing even today. This enables us to model a
complex and nonlinear phenomenon with an immense number of spatio-temporal discretization.
Computational fluid dynamics (CFD) is one of the understandable examples for this matter. It is
widely known that the required number of spatial grid points for three-dimensional CFD is usually
proportional to Re9/4, where Re is the Reynolds number. In addition, the time scale ratio is pro-
portional to Re1/2, which implies the necessity of longer integration times with the precise time
steps (Kajishima & Taira, 2017). Although this is just an example, we can now notice the impor-
tance to prepare an efficient way of data handling for a wide range of science and engineering, which
enables us to achieve fast data transfer over the world and promotes the progress of science.

To that end, we here consider a three-dimensional data reconstruction from limited two-dimensional
sectional measurements assisted by supervised convolutional neural networks. With an example of
complex fluid flow around a square cylinder, we discuss the possibility of data compression and its
effectiveness. In addition, we also propose an adaptive-sampling-based super resolution to achieve
more efficient data saving.

2 METHODS
2.1 2D-3D CONVOLUTIONAL NEURAL NETWORK

We use convolutional neural network (CNN) (LeCun et al., 1998) for the present data reconstruction.
Since our aim is to obtain a three-dimensional velocity field q3D from two-dimension sectional
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Figure 2: Comparison of different ways of spatial data sampling.

velocity fields q2D, we combine two- and three-dimensional CNNs, as illustrated in figure 1. The
size of data will be explained later. As an activation function, we use ReLU function (Nair & Hinton,
2010) to stabilize the weight update process for training. Weights w inside the present model F are
optimized in an L2 error minimization manner as

w = argminw||q3D −F(q2D;w)||2. (1)

For the construction of the present model, we use early stopping criterion (Prechelt, 1998) with 20
iterations to avoid an overfitting (Brunton & Kutz, 2019).

2.2 ADAPTIVE SAMPLING BASED SUPER RESOLUTION

To deal with three-dimensional data in a more efficient manner, we also combine our three-
dimensional reconstruction with super-resolution reconstruction (Fukami et al., 2019). We aim to
reconstruct a three-dimensional field q3D from low-resolution sectional fields q2D,LR. Prior to the
use of the aforementioned 2D-3D CNN, we prepare the another independent CNN G for super res-
olution, such that q2D,HR = G(q2D,LR;wG). The whole pipeline is summarized as

q3D = F(q2D,HR;w) = F(G(q2D,LR;wG);w). (2)

Low-resolution data, utilized for training machine learning models in super resolution, is usually
generated through max and average pooling operations (Fukami et al., 2019), as shown in the middle
of figure 2. Though the pooling operations are simple and easy to apply, it may be inefficient
to extract structures and features of data, especially when scales and complexities of structures
significantly vary over the field. Hence, we here propose a new pooling idea referred to as adaptive
sampling (see, Appendix for the detailed procedure) to consider a spatial ‘importance’ of local region
for the determination of the sampling rate. A spatial standard deviation is used as the ‘importance’ of
the local region, which reflects the larger significance of region as higher sampling ratio, as presented
in the right side of figure 2. In the present demonstration, both the average-pooled field and the
adaptive-sampled field are considered as an input q2D,LR of the model for the super resolution G
and compared in terms of its efficacy.

3 RESULTS
As an example, a flow around a square cylinder at ReD = 300 is considered. Since the wake
at ReD = 300 contains the complex three-dimensional structure caused by merging of separated
shear layers (Bai & Alam, 2018), this setup can be regarded as a good demonstration to investigate
whether the present CNN model works for complex data sets or not. The data set is prepared
with a direct numerical simulation (DNS) by numerically solving the incompressible continuity and
Navier–Stokes equations (Morimoto et al., 2020). In the present study, we focus on the part of
computational volume around the square cylinder (Lx, Ly, Lz) = (12.8D, 4D, 4D) with the grid
number of (Nx, Ny, Nz) = (256, 128, 160). We use 1000 snapshots for training the CNN model.
As the input and the output attributes, the velocity fields q = {u, v, w} are used.

Let us first present the reconstructed flow field visualized with the λ2 vortex criterion, i.e., λ2 =
−0.001 (Jeong & Hussian, 1995) in figure 3(a). We here use five and seven x−y sectional velocities
for the input data q2D. The reconstructed fields are in reasonable agreement with the reference DNS
data. We also visualize the reconstructed sectional velocities at z/D = 0.025 in figure 3(b). As
shown, the present model can reconstruct the flow field with reasonable accuracy in terms of both
the visualization and the L2 error norms. Notably, the reconstructed fields with nsection = 7 are
almost indistinguishable from the reference, while capturing the fine structures. The results above
supports the capability of the present model as an efficient data handling tool, which can reduce the
data to approximately 4% (= (256× 128× 7 sections)/(256× 128× 160)) of the original size.
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Figure 3: (a) CNN-based reconstruction fields with 5 and 7 cross sections (vortical structures iden-
tified with λ2 = −0.001, colored by the streamwise vorticity). The values underneath each figure
indicate an L2 error norm. (b) Reconstructed sectional velocities at z/D = 0.025.

In addition to the aforementioned capabilities, the present model can be augmented combining with
super-resolution analysis. As introduced in section 2.2, super-resolved velocity fields qHR recon-
structed from an adaptive-sampled low-resolution data qLR are fed into the present 2D-3D CNN
model F as the input data. Prior to feed into the 2D-3D CNN model, the results on super-resolution
analysis for two-dimensional sections are summarized in figure 4(a). For comparison, the results
with conventional average pooling-based inputs are also presented. For the average pooling-based
inputs, the high-resolution field of 256 × 128 grids can successfully be super-resolved from coarse
input data of 16×16 grids. Moreover, the reconstruction accuracy can be improved with the adaptive
sampling while also reducing the number of grid points on the low-resolution data. Especially, the
number of grid points for the w component can be saved by approximately 25% against that with the
average pooling. Note, however, that the adaptive sampling does not show the significant advantage
for the u component in this particular example, although not shown in figure 4(a). This is due to the
difference of complexity among velocity attributes, which implies that care should be taken for the
choice of an appropriate pooling method depending on data sets. In turn, there may be an optimal
combination of pooling methods to achieve efficient data handling.

We finally show the three-dimensional reconstructed fields from the super-resolved two-dimensional
inputs in figure 4(b). We here use nsections = 5 for all models. In addition to the uses of average
pooling and adaptive sampling for all velocity attributes, the hybrid pooling, which uses the average
pooling for the u component while taking the adaptive sampling for the v and w components, is also
considered motivated by the observation above. The hybrid model can achieve almost same error
label as that with the conventional average pooling while reducing the storage to approximately
0.0218% of the original number of grid points. Summarizing above, the present idea assisted by
the supervised CNN framework with the adaptive super resolution can significantly reduce the data
storage while keeping its reconstruction accuracy.

4 CONCLUDING REMARKS
We considered a supervised use of convolutional neural networks (CNNs) to reconstruct a three-
dimensional flow field from limited sectional measurements toward effective data handling. The
present report tested with a flow around a square cylinder at ReD = 300 showed the capability of
2D-3D CNN for the reasonable reconstruction in terms of both the visualization assessments and the
qualitative examinations, while saving the data storage of 0.02% assisted by the proposed adaptive
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Figure 4: (a) Super-resolution reconstruction from adaptive sampled velocities v and w. The values
underneath the contours of input indicate the number of grid points. The values below the contours
indicate the L2 error norm. (b) Reconstructed fields from coarse input combining the conventional
pooling and the adaptive sampling. Listed values indicate the L2 error and the compression ratio
against the number of grid points over the original three-dimensional discretized domain.

sampling. The notable strength of the present model is its reversible manner for data compression,
i.e., lossless compression, which should be appreciated not only in fluid mechanics but also in a
wide range of science and engineering applications. The demonstration with the complex three-
dimensional fluid flows here supports us to use the present idea for more practical applications such
as chaotic turbulence and experimental data. For enthusiastic readers, we refer to Matsuo et al.
(2021) in details.
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Figure 5: (a) A standard deviation map from velocity data withNsw×Nsh = 8×8. (b) Application
of the adaptive sampling to the present velocity field. For comparison, the standard average pooling
with α = 8 is also shown. The colors in the geometry image indicate the pooling rate α; white
represents α = 8, gray represents 16 and black represents 32.

APPENDIX: ADAPTIVE SAMPLING

For the combination of the present three-dimensional reconstruction and super resolution, we use
an adaptive-sampling-based input to achieve efficient data saving. In this Appendix, we explain the
detailed procedure of adaptive sampling. A snapshot of velocity field is first divided into several
sub-domains of Nsw ×Nsh, where Nsw and Nsh correspond to the width and the height of the sub-
domain, respectively, as shown in figure 5(a). We then consider the local standard deviation based on
the deviation from the mean in the sub-domain to decide the local pooling rate α for each snapshot.
Throughout these processes, the standard deviation map Nσ,w × Nσ,h can be generated, where
Nσ,w = Nx/Nsw, Nσ,h = Ny/Nsh, and Nx × Ny indicates the size of the entire cross-section.
Based on the standard deviation map and the adaptive sampling rate α, the adaptive-sampling-based
low-resolution data can be Nσ,w ×Nσ,h arranged as follows:

1. Scan the standard deviation map and find the portion with smaller values than a certain
threshold, i.e., σi,j < θth,1 .

2. Scan the portions surrounding σi,j , i.e., {σi+1,j , σi+2,j , ..., σi+(α1/Nsw−1),j+(α1/Nsh−1)}.
If all the portions have smaller standard deviations than θth,1, we then take the pooling
operation over σi,j to σi+(α1/Nsw−1),j+(α1/Nsh−1).

3. For remaining portion, scan over the standard deviation map again for an arbitrary portion
with a standard deviation between the thresholds θth,1 < σij < θth,2.

4. Similarly, if the surrounding portion has thresholds less than θth,2, we take the pooling
operation over σi,j to σi+(α2/Nsw−1),j+(α2/Nsh−1).

5. Take the standard average pooling operation for the remaining portions, where the standard
deviation is higher than θth,2.

As an example, let us present the adaptive sampled flow field with the pooling rates {α1, α2, α3} =
{32, 16, 8} in figure 5(b). As can be seen, the region with the higher standard deviation retains
higher resolution than that with lower standard deviation. Note that we have the variation in the
domain size for the same pooling rate since we consider the non-uniform grid in the y direction.
More details can be found in Matsuo et al. (2021).

5


	Introduction
	Methods
	2D-3D Convolutional Neural Network
	Adaptive sampling based super resolution

	Results
	Concluding remarks

