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ABSTRACT

Modern design, control, and optimization often require multiple expensive simu-
lations of highly nonlinear stiff models. These costs can be amortized by training
a cheap surrogate of the full model, which can then be used repeatedly. Here
we present a general data-driven method, the continuous-time echo state network
(CTESN), for generating surrogates of nonlinear ordinary differential equations
with dynamics at widely separated timescales. We showcase the ability for this
surrogate to accurately handle highly stiff systems which have been shown to
cause training failures with common surrogate methods such as Physics-Informed
Neural Networks (PINNs), Long Short Term Memory (LSTM) networks, and dis-
crete echo state networks (ESN). We show that our model captures fast transients
as well as slow dynamics, while demonstrating that fixed time step machine learn-
ing techniques are unable to adequately capture the multi-rate behavior. This pro-
vides compelling evidence for the ability of CTESN surrogates to predict and
accelerate highly stiff dynamical systems which are unable to be directly handled
by previous scientific machine learning techniques.

1 INTRODUCTION

Stiff nonlinear systems of ordinary differential equations are widely prevalent throughout science
and engineering (Wanner & Hairer, 1996; Shampine & Gear, 1979) and are characterized by dy-
namics with widely separated time scales. These systems require highly stable numerical methods
to use non-vanishing step-sizes reliably gear1971numerical, and also tend to be computationally ex-
pensive to solve. Even with state-of-the-art simulation techniques, design, control, and optimisation
of these systems remains intractable in many realistic engineering applications (Benner et al., 2015).
To address these challenges, researchers have focused on techniques to obtain an approximation to
a system (called a “surrogate”) whose forward simulation time is relatively inexpensive while main-
taining reasonable accuracy (Willard et al., 2020; Ratnaswamy et al., 2019; Zhang et al., 2020; Kim
et al., 2020; van de Plassche et al., 2020).

A popular class of traditional surrogatization techniques is projection based model order reduction,
such as the proper orthogonal decomposition (POD) (Benner et al., 2015). This method computes
“snapshots” of the trajectory and uses the singular value decomposition of the linearization in order
to construct a basis of a subspace of the snapshot space, and the model is remade with a change of
basis. However, if the system is very nonlinear, the computational complexity of this linearization-
based reduced model can be almost as high as the original model. One way to overcome this diffi-
culty is through empirical interpolation methods (Nguyen et al., 2014). Other methods to produce
surrogates generally utilize the structural information known about highly regular systems like par-
tial differential equation discretizations (Frangos et al., 2010).

Many of these methods require a scientist to actively make choices about the approximations being
performed to the system. In contrast, the data-driven approaches like Physics-Informed Neural Net-
works (PINNs)(Raissi et al., 2019) and Long Short Term Memory (LSTM) networks (Chattopad-
hyay et al., 2020) have gained popularity due to their apparent applicability to “all” ordinary and
partial differential equations in a single automated form. However, numerical stiffness (Söderlind
et al., 2015) and multiscale dynamics represent an additional challenge. Highly stiff differential
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Figure 1: Prediction of each surrogate on the Robertson’s equations Shown in each figure is
the result of the data-driven algorithm’s prediction at p = [0.04, 3 × 107, 1 × 104], a parameter
set not in the training data. Ground truth, obtained by solving the ODE using the Rosenbrock23
solver with absolute tolerance of 10−6, is in blue. The PINN was trained using a 3-layer multi-layer
perceptron with the ADAM optimizer for 300,000 epochs with minibatching, and its prediction is in
red. Both the ESN and CTESN were trained with a reservoir size of 3000 on a parameter space of
[0.036, 0.044]× [2.7× 107, 3.3× 107]× [9× 103, 1.1× 104], from which 1000 sets of parameters
were sampled using Sobol sampling. The predictions of the CTSEN are generated by the radial basis
function prediction of Wout(p) and are shown in green. Predictions from the ESN are in purple. The
LSTM predictions, in gold, are generated by a network with 3 hidden LSTM layers and an output
dense layer, after training for 2000 epochs. (A) A timeseries plot of the y1(t) predictions. (B) The
absolute error of the surrogate predictions on y1(t). (C) A timeseries plot of the y2(t) predictions.
(D) The absolute error of the surrogate predictions on y2(t). (E) The result of y1(t) + y2(t) + y3(t)
over time. By construction this quantity’s theoretical value is 1 over the timeseries.
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equations can lead to gradient pathologies that make common surrogate techniques like PINNs hard
to train (Wang et al., 2020).

The purpose of this work is to introduce a general data-driven method, the CTESN, that is gener-
ally applicable and able to accurately capture highly nonlinear heterogeneous stiff time-dependent
systems without requiring the user to train on non-stiff approximations. It is able to accurately train
and predict on highly ill-conditioned models. We demonstrate these results (Figure 1) on the Rober-
ston’s equations, which PINNs, LSTM networks and discrete-time machine learning techniques fail
to handle. Our results showcase the ability to transform difficult stiff equations into non-stiff reser-
voir equations which are then integrated in place of the original system.

2 CONTINUOUS-TIME ECHO STATE NETWORKS

Echo State Networks (ESNs) are a reservoir computing framework which projects signals from
higher dimensional spaces defined by the dynamics of a fixed non-linear system called a “reservoir”
(Ozturk et al., 2007). The ESN’s mathematical formulation is as follows. For a NR-dimensional
reservoir, the reservoir equation is given by:

rn+1 = f(Arn +Wfbxn), (1)

where f is a chosen activation function (like tanh or sigmoid), A is the NR ×NR reservoir weight
matrix, and Wfb is the NR×N feedback matrix where N is the size of our original model. In order
to arrive at a prediction of our original model, we take a projection of the reservoir:

x̂n = g(Woutrn), (2)

where g is the output activation function (generally the identity or sigmoid) and Wout is the N×NR

projection matrix. In the training process of an ESN, the matrices A and Wfb are randomly chosen
constants, meaning the Wout matrix is the only variable which needs to be approximated. Wout is
calculated by using a least squares fit of against the model’s time series, which then fully describes
the prediction process.

This ability to handle problems with gradient pathologies gives the intuitive justification for explor-
ing reservoir computing techniques on handling stiff equations. However, stiff systems generally
have behavior spanning multiple timescales which are difficult to represent with uniformly-spaced
prediction intervals. To solve these issues, we introduce a new variant of ESNs, which we call
continuous-time echo state networks (CTESNs), which allows for an underlying adaptive time pro-
cess while avoiding gradient pathologies in training. Let N be the dimension of our model, and let
P be a Cartesian space of parameters under which the model is expected to operate. The CTESN of
with reservoir dimension NR is defined as

r′ = f(Ar +Whybx(p
∗, t)), (3)

x(t) = g(Woutr(t)), (4)

where A is a fixed sparse random matrix of dimension NR ×NR and Whyb is a fixed random dense
matrix of dimensions NR ×N . The term Whybx(p

∗, t) represents a “hybrid” term that incorporates
physics information into the reservoir (Pathak et al., 2018), namely a solution at some point in the
parameter space of the dynamical system. Given these fixed values, the readout matrix Wout is the
only trained portion of this network and is obtained through a least squares fit of the reservoir ODE
solution against the original timeseries. We note that in this study we choose f = tanh and g = id
for all of our examples.

To obtain a surrogate that predicts the dynamics at new physical parameters, the reservoir projection
Wout is fit against many solutions at parameters {p1, . . . , pn}, where n is the number of training
data points sampled from the parameter space. Using these fits, an interpolating function Wout(p)
between the matrices can be trained. A prediction x̂(t) for at physical parameters p̂ is thus given by:

x̂(t) = Wout(p̂)r(t). (5)

A strong advantage of our method is its ease of implementation and ease of training. Global L2

fitting via stabilized methods like SVD are robust to ill-conditioning, alleviating many of the issues
encountered when attempting to build neural surrogates of such equations. Also note that in this
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particular case, the readout matrix is fit against the same reservoir time series. This means that
prediction does not need to simulate the reservoir, providing an extra acceleration.

Another advantage is the ability to use time stepping information from the solver during training. As
noted before, not only are step sizes chosen adaptively based on minimizing a local error estimate to
a specified tolerance (Shampine & Gear, 1979), but they also adapt to concentrate around the most
stiff and numerically difficult time points of the model by incorporating the Newton convergence into
the rejection framework. These timestamps thus provide heuristic snapshots of the most important
points for training the least squares fit, whereas snapshots from uniform time steps may skip over
many crucial aspects of the dynamics.

3 CASE STUDY: ROBERTSON’S EQUATIONS AND HIGH STIFFNESS

We first consider Robertson’s chemical reactions involving three reaction species A, B and C:

A
0.04−−→ B

B +B
3×107−−−−→ C +B

B + C
104−−→ A+ C

which lead to the ordinary differential equations:

ẏ1 = −0.04y1 + 104y2 · y3 (6)

ẏ2 = 0.04y1 − 104y2 · y3 − 3 · 107y22 (7)

ẏ3 = 3 · 107y22 (8)

where y1, y2, and y3 are the concentrations of A, B and C respectively. This system has widely
separated reaction rates (0.04, 104, 3 · 107), and is well known to be very stiff (Gobbert, 1996;
Robertson & Williams, 1975; Robertson, 1976). It is commonly used as an example to evaluate
integrators of stiff ODEs (Hosea & Shampine, 1996). Finding an accurate surrogate for this system
is difficult because it needs to capture both the stable slow reacting system and the fast transients.
Additionally, the surrogate needs to be consistent with this system’s implicit physical constraints,
such as the conservation of matter (y1 + y2 + y3 = 1) and positivity of the variables (yi > 0), in
order to provide a stable solution.

The CTESN method is able to accurately capture both the slow and fast transients and respect the
conservation of mass. The ESN is able to accurately predict at the time points it was trained on,
but many features are missed. The uniform stepping completely misses the fast transient rise at
t = 10−4 because the uniform intervals do not sample points from that time scale. Additionally,
the first sampled time point at t = 100 is far into the concentration drop of y1 which leads to an
inaccurate prediction before the system settles into near steady state behavior. As stated earlier, the
CTESN uses information from a stiff ODE solver to choose the right points along the time span to
accurately capture multi-scale behaviour with less training data than the ESN. In order to compare
the discrete ESN to the continuous result, a cubic spline was fit to its 101 evenly spaced prediction
points.

Figure 1 highlights how the trained PINN fails to capture both the fast and the slow transients and
do not respect mass conservation. Our collaborators investigated why PINNs fail to solve these
equations in (Ji et al., 2020). The reason for the difficulty can be attributed to recently identified
results in gradient pathologies in the training arising from stiffness (Wang et al., 2020). With a highly
ill-conditioned Hessian in the training process due to the stiffness of the equation, it is very unlikely
for local optimization to find a parameters which make an accurate prediction. We additionally note
stiff systems of this form may be hard to capture by neural networks directly as neural networks
show a bias towards low frequency functions (Rahaman et al., 2019).
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4 CONCLUSION

We present CTESNs, a data-driven method for generating surrogates of nonlinear ordinary differ-
ential equations with dynamics at widely separated timescales. Our method maintains accuracy for
different parameters in a chosen parameter space, and shows favourable scaling with system size on
a physics-inspired scalable model. This method can be applied to any ordinary differential equation
without requiring the scientist to simplify the model before surrogate application, greatly improving
productivity.

ACKNOWLEDGEMENT

The information, data, or work presented herein was funded in part by the Advanced Research
Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Numbers DE-
AR0001222 and DE-AR0001211, and NSF grant OAC-1835443. The views and opinions of au-
thors expressed herein do not necessarily state or reflect those of the United States Government or
any agency thereof. The authors thank Francesco Martinuzzi for reviewing drafts of this paper.

REFERENCES

Peter Benner, Serkan Gugercin, and Karen Willcox. A survey of projection-based model reduction
methods for parametric dynamical systems. SIAM review, 57(4):483–531, 2015.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to
numerical computing. SIAM review, 59(1):65–98, 2017.

Francesco Casella. Simulation of large-scale models in modelica: State of the art and future per-
spectives. In Proceedings of the 11th International Modelica Conference, pp. 459–468, 2015.

Ashesh Chattopadhyay, Pedram Hassanzadeh, and Devika Subramanian. Data-driven predictions of
a multiscale lorenz 96 chaotic system using machine-learning methods: reservoir computing, arti-
ficial neural network, and long short-term memory network. Nonlinear Processes in Geophysics,
27(3):373–389, 2020.

Michalis Frangos, Youssef Marzouk, Karen Willcox, and B van Bloemen Waanders. Surrogate and
reduced-order modeling: a comparison of approaches for large-scale statistical inverse problems
[chapter 7]. 2010.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.

Matthias K Gobbert. Robertson’s example for stiff differential equations. Arizona State University,
Technical report, 1996.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

ME Hosea and LF Shampine. Analysis and implementation of tr-bdf2. Applied Numerical Mathe-
matics, 20(1-2):21–37, 1996.

Weiqi Ji, Weilun Qiu, Zhiyu Shi, Shaowu Pan, and Sili Deng. Stiff-pinn: Physics-informed neural
network for stiff chemical kinetics. arXiv preprint arXiv:2011.04520, 2020.

Youngkyu Kim, Youngsoo Choi, David Widemann, and Tarek Zohdi. A fast and accurate physics-
informed neural network reduced order model with shallow masked autoencoder. arXiv preprint
arXiv:2009.11990, 2020.

Diederik P Kingma and J Adam Ba. A method for stochastic optimization. arxiv 2014. arXiv
preprint arXiv:1412.6980, 434, 2019.

VB Nguyen, M Buffoni, K Willcox, and BC Khoo. Model reduction for reacting flow applications.
International Journal of Computational Fluid Dynamics, 28(3-4):91–105, 2014.

5



Under review as a conference paper at ICLR 2021
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Figure 2: Training a PINN on the Robertson’s Equations: PINN was trained for 300,000 epochs
using the ADAM optimizer with a learning rate of 10−3, by which time the loss seems to saturate.
The hyperparameters of the PINN can be found in the Case Studies section.

A APPENDIX

A.1 FITTING ROBERTSON’S EQUATIONS - HYPERPARAMETERS

A surrogate was trained by sampling 1000 sets of parameters from the Cartesian parameter space
[0.036, 0.044]× [2.7× 107, 3.3× 107]× [9× 103, 1.1× 104] using Sobol sampling so as to evenly
cover the whole space. We train on the time series of the three states themselves as outputs. A
least squares projection Wout was fit for each set of parameters, and then a radial basis function
was used to interpolate between the matrices. The prediction workflow is as follows: given a set
of parameters whose time series is desired, the radial basis function predicts the projection matrix.
The pre-simulated reservoir is then sampled at the desired time points, and a matrix multiplication
with the predicted Wout gives us the desired prediction. Figure 1 shows a comparison between the
CTESN, ESN, PINN and LSTM methods. The PINN data is reproduced from (Ji et al., 2020) and
the ESN was trained using 101 time points uniformly sampled from the time span, while CTESN
used 61 adaptively sampled time points informed by the ODE solver (Rosenbrock23 (Shampine,
1982)).

The PINN was trained by sampling 2500 logarithmically spaced points across the time span. The
network used was a 3-layer multi-layer perceptron with 128 nodes per hidden layer and the Gaussian
Error Linear Unit activation function (Hendrycks & Gimpel, 2016). The layers were initialed using
Xavier initialization (Glorot & Bengio, 2010), and trained with the ADAM optimizer (Kingma &
Ba, 2019) at a learning rate of 10−3 for 300,000 epochs with mini batch size of 128. Figure 2
shows the convergence plot as the PINN trains on the ROBER equations. The LSTM network used
a similar architecture to the PINN, but with LSTM hidden layers instead of fully connected layers.
It used 2500 logarithmically spaced points and was trained for 2000 epochs until convergence.

A.2 PRACTICAL IMPLEMENTATION

In this section we describe the automated training procedure used to generate CTESN surrogates.
An input parameter space P is first chosen. This could be a design space for the model or a range
of operating conditions. Now n sets of parameters {p1, . . . , pn} are sampled from this space using
a sampling sequence that covers as much of the space as possible. The full model is now simulated
at each sample in parallel since each run is independent, generating time series for each run. The
choice of points in time used to generate the time series at each p comes from the numerical ODE
solve at that p. The reservoir ODE is then constructed using a candidate solution at any one of the n
parameters x(p∗, t), p∗ ∈ {p1, . . . , pn} and is then simulated, generating the reservoir time series.
Since the reservoir ODE is non-stiff, this simulation is cheap compared to the cost of the full model.
Least squares projections can now be calculated from each solution to the reservoir in parallel. Once
all the least squares matrices are obtained, an interpolating function is trained to predict the least
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Figure 3: Validating the surrogate of the scalable heating system with 10 rooms. When tested
with parameters it has not seen in training, our surrogate is able to reproduce the behaviour of the
system to within 0.01% error. The surrogate is trained on 100 points sampled from the [17C, 23C]×
[65C, 75C] where the ranges represent set point temperature of each room and set point of the fluid
supplying heat to the rooms respectively. The test parameters that validated here are [21C, 71C].
More details on training can be found in the Case Studies section.

squares projection matrix. Both the least squares fitting and training the interpolating function are,
in practice, much cheaper than the cost of simulating the model multiple times.

Prediction comprises of two steps: predicting the least squares matrix, and simulating the reservoir
time series (or, in this case, just using the pre-computed continuous solution since the reservoir is
fixed for every set of parameters). The final prediction is just the matrix multiplication of two.

A strong advantage of the training is that it requires no manual investigation of the stiff model on the
part of the researcher and can be called as an off-the-shelf routine. It allows the researcher to make
a trade-off, computing a few parallelized runs of the full stiff model in order to generate a surrogate,
which can then be plugged in and used repeatedly for design and optimization.

We implemented the training routines and the following models in the Julia programming language
(Bezanson et al., 2017) to take advantage of its first class support for differential equations solvers
(Rackauckas & Nie, 2017) and scientific machine learning packages. For the examples in this paper,
we have sampled the high-dimensional spaces using a Sobol low-discrepancy sequence (Sobol’
et al., 2011) and interpolated the Wout matrices using a radial basis function provided by the Julia
package Surrogates.jl (https://github.com/SciML/Surrogates.jl).

A.3 STIFFLY-AWARE SURROGATES OF HVAC SYSTEMS

We also present a scalable benchmark used in the engineering community (Casella, 2015). It is a
simplified, lumped-parameter model of a heating system with a central heater supplying heat to sev-
eral rooms through a distribution network. Each room has an on-off controller with hysteresis which
provides very fast localized action (Ranade & Casella, 2014). The resulting system of equations is
thus very stiff and unable to be solved by standard explicit time stepping methods.

The size of the heating system is scaled by a parameter N which refers to the number of users/rooms.
Each room is governed by two equations corresponding to its temperature and the state of its on-off
controller. The temperature of fluid supplying heat to each room is governed by one equation. This
produces a system with 2N + 1 coupled non-linear equations. This “scalability” lets us test how
our CTESN surrogate scales. To train the surrogate, we define a parameter space P under which
we expect it to operate. First, we assume set point temperature of each room to be between 17C
and 23C. Each room is warmed by a heat conducting fluid, whose set point is between 65C and
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Figure 4: Reliability of surrogate through parameter space. We sampled our grid at over 500
grid points and plotted a heatmap of test error through our parameter space. We find our surrogate
performs reliably even at the border of our space with error within 0.1%

40010 100

Figure 5: Scaling performance of surrogate on heating system. We compare the time taken to
simulate the full stiff model to the trained surrogate with 10, 20, 30 , 40, 50, 60, 70, 80, 90, 100, 200
and 400 rooms. We observe a speedup of up to 98x. The surrogate was trained by sampling 100 sets
of parameters from our input space, with a reservoir size of 3000.

75C. Thus the parameter space over which we expect our surrogate to work is the rectangular space
denoted by [17C, 23C]× [65C, 75C].

We used a reservoir size of 3000 and sampled 100 sets of parameters from this space using Sobol
sampling, and fit least squares projection matrices Wout between each solution and the reservoir.
For a system with N rooms, we train on N + 1 outputs, namely the temperature of each room,
and the temperature of the heat conducting fluid. Figure 3 demonstrates that the training technique
is accurately able to find matrices Wout which capture the stiff system within 0.01% error on a
test parameters. We then fit an interpolating radial basis function Wout(p). Figure 4 demonstrates
that the interpolated Wout(p) is able to adequately capture the dynamics throughout the trained
parameter space. Lastly, Figure 5 demonstrates the O(N) cost of the surrogate evaluation, which
in comparison to the O(N3) cost of a general implicit ODE solver (due to the LU-factorizations)
leads to an increasing gap in the solver performance as N increases. At the high end of our test, the
surrogate accelerates a 801 dimensional stiff ODE system by approximately 98x.
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