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ABSTRACT

We present an investigation into data selection methods for the efficient sampling
of configuration space as applied to the development of inter-atomic potentials
for scale bridging in molecular dynamics (MD) simulations. This investigation
suggests that the most efficient sampling techniques are those that incorporate
information on an atomic level such as forces or atomic energies. Finally, we
generate an inter-atomic potential for the a sodium chloride system using each
data selection technique and find that the global selection methods result in non-
physical simulations.

1 INTRODUCTION

In the development of any supervised regression model it is important to consider how to generate
training data to optimally represent your target function. In the case where generation of this data
is expensive, it is further necessary to considering how to minimize the number of points required
for effective training. One application where this is especially prevalent is the generation of inter-
atomic potentials for use in molecular dynamics (MD) simulations. In these applications, expensive
ab-initio data is generated on small atomic system over short time scales before a machine learning
algorithm such as Gaussian process regression (GPR) (Bartók et al. (2010)) or a neural network
(NN) (Behler & Parrinello (2007); Schütt et al. (2018)) is used to fit a function that maps atomic en-
vironments to a system energy and atomic forces. Once constructed, these potentials can be used for
classical MD simulations and employed on larger atomistic systems for longer time scales. In these
simulations, the machine learned models can achieve near ab-initio accuracy with a computational
complexity of O(N) where N is the number of atoms in the system (Tovey et al. (2020); Sivaraman
et al. (2020)). The fitting procedure involves the deconstruction of the global energy into contri-
butions from atomic environments. In order to do this, the atomic environments are transformed
into so-called descriptors that are then passed into a machine learning algorithm. These descriptors
encode symmetries present in the potential such as rotation, translation and particle exchange. In
order to develop an effective model, it is necessary that the training data contain as many unique
atomic environments as possible such that one maximally samples configuration space. Whilst this
may be stated simply, it is not clear in practice what constitutes a unique atomic environment, or
how best to assess an environment for uniqueness. There are a number of factors in the develop-
ment of these inter-atomic potentials which are currently being investigated including the choice of
descriptor (Bartók et al. (2013); Behler & Parrinello (2007); Behler (2011); Gastegger et al. (2018);
Lindsey et al. (2017); Rupp et al. (2012); Samanta (2018); Seko et al. (2014); Shapeev (2016); Taka-
hashi et al. (2018); Thompson et al. (2015); Zhu et al. (2016)), or the machine learning algorithm
used in the fitting procedure (Rupp et al. (2012); Schütt et al. (2017); Balabin & Lomakina (2011);
Bartók et al. (2010); Behler & Parrinello (2007)). In the case of data selection for these models, it
is often the case that training data is sampled uniformly in time from long, expensive, ab-initio MD
simulations (Cole et al. (2020); Shao et al. (2020)), with some notable steps being taken in the direc-
tion of active learning (Sivaraman et al. (2020)), descriptor space metrics (De et al. (2016)), and in
the direct manipulation of atomic structure to induce rare events as in the so-called RAG sampling
procedure (Choi & Jhi (2020)).
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Figure 1: Resulting distributions of global energy (left), atomic energies (middle) and force magni-
tude (right) in data-sets for different selection methods presented in Section 2. Each data-set consists
of 512 configurations selected via the random-selection method (solid, green), sampling uniformly
in global energy (dash-dotted, blue), or sampling uniformly in atomic energies (dashed, orange).
Insets show zoom-ins in the long-tail of the distributions.

In this work, several approaches to selecting data for use in the development of an inter-atomic
potential are presented and tested in order to understand what factors might impact model perfor-
mance. The methods studied incorporate both global properties of a configuration, as well as the
local, atomic information, in order to understand which approach leads to a more accurate model.
Data selected by each method is used to train an inter-atomic potential on simulated molten sodium
chloride which is then assessed based on the root mean square error (RMSE), maximum error, and
mean absolute error (MAE) of the model predictions.

2 DATA SELECTION METHODS

In training an inter-atomic potential on global energy data we make an underlying assumption that
this energy may be decomposed into atomic contributions as

E =

N∑
i

εi, (1)

where εi is the contribution of the ith atomic environment and N is the number of atoms in the
system. As was briefly mentioned in the introduction, the key to data selection in the development
of machine learned inter-atomic potentials is sufficient sampling of configuration space such that
all unique configurations resulting in some εi above are realised in the training data. In order to
ensure that large parts of configuration space are sampled, we perform several MD simulations over
different sets of constant parameters, in our case, fixed atom number, pressure, and temperature. On
this pool of samples we apply one of the selection methods below to identify configurations that
contain relevant atomic environments.

2.1 RANDOM SELECTION

In the random sampling approach, configurations over the full MD trajectory are sampled at random
and used as training, test, and validation data. As a benchmark for the performance of the sampling
methods over different simulations, we also use this method on data from a single MD simulation
which we refer to as single-MD random sampling.

2.2 GLOBAL ENERGY SELECTION

In ab-initio simulations, the Schrödinger equation is solved numerically using density functional
theory (DFT) (Burke (2012)) in order to determine the total energy of the system of atoms. It is
on this energy, along with the forces on each of the atoms, that the machine learning algorithm
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employed will train. Therefore, it is rational to select training data by sampling uniformly across the
energy values as illustrated in Figure 1. Whilst this approach ensures the existence of unique global
energies in the training data, it is not necessarily true that these configurations contain within them
unique atomic environments.

2.3 ATOMIC ENERGY SELECTION

Whilst in an ab-initio simulation the concept of a atomic energy in Equation 1 is controversial, in a
classical simulation it can be written simply as the summation of terms in the inter-atomic potential
calculation up to a defined cutoff as

εi =

Npairs∑
j

U(rij , rc), (2)

where U is a function determining the potential energy between two atoms i and j, rij is the pairwise
distance between the atoms i and j, rc is the short range cutoff of the potential, and the summation
runs over all atoms forming an interacting pair with atom i. Due to the similarity between Equation
2 and the fundamental assumption made in Equation 1, this is a candidate for data selection. In our
study, we generate data-sets by selecting configurations uniformly based on atomic energies.

2.4 FORCE SELECTION

Along a similar line of thinking to the previous method, force sampling also looks to an atomic
property to choose interesting configurations. In this case, there is the added benefit of forces be-
ing quantum mechanical observables, and therefore available in an ab-initio simulation through the
Hellmann-Feynman theorem (Güttinger (1932); Feynman (1939)). In this method, rather than the
atomic energy being studied, the net force on the ith atom is used to indicate a unique environment.

3 RESULTS
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Figure 2: Comparison of errors in force predictions for NN-models trained on data-sets that were
selected by the different methods presented in Section 2. From left to right we show plots for the
maximum error (Max), root-mean-square error (RMSE), and the mean absolute error (MAE) in the
ML models.

In order to test the effectiveness of each selection method data was generated from 100 atom classi-
cal MD simulations of molten sodium chloride using a Born-Meyer-Huggins-Tosi-Fumi (BMHTF)
potential (Tosi & Fumi (1964); Fumi & Tosi (1964); Mayer (1933); Born & Mayer (1932); Huggins
& Mayer (1933)) for temperatures and pressures ranging from 900 K to 2200 K and 1 · 10−3 bar to
5 · 104 bar respectively.

We initially evaluated the performance of the selection methods by training models on data chosen
by each of them and then calculating the maximum error (Max), root mean square error (RMSE),
and the mean absolute error (MAE) of the model force predictions with respect to test sets. For each

3



Published as a workshop paper at ICLR 2021 SimDL Workshop

0 1 2 3 4 5 6
r [Å]

0.0

0.5

1.0

1.5

2.0

2.5

g(
r)

BMHTF
NN - global energy
NN - atomic energies

0 1 2 3 4 5 6
r [Å]

BMHTF
GPR - global energy
GPR - atomic energies

Figure 3: Comparison of the Na-Na radial distribution function computed from a reference BMHTF
simulation and NN-driven (left) and GPR-driven (right) MDs with 500 ion-pairs trained on 512 (NN)
or 128 (GPR) configurations selected via the global energy and atomic energies selection method.

selection method, 6 models of differing size and input parameters (see Appendix) were trained. Each
model was tested on 20’480 configurations consisting of data-sets spanning different temperatures
chosen in equal parts by the selection methods described in Section 2.

Figure 2 shows a clear trend in the prediction errors. The models trained on data-sets that were
generated by the force or atomic energy selection methods achieve lower max and root mean square
errors. One explanation for the improved performance of the atomic selection approaches might
be in their distribution of data. While the global energy selection method appears to produce more
diverse global energies, the atomic energy selection method contains these so-called ’fat tails’ in the
atomic energy distribution. The appearance of these fat tails implies the inclusion of less probable
configurations. In the case of global energy selection, the contribution of these atomic energies
may be diluted in the summation over all environments, whereas with the atomic approach, they are
identified and added to the training data.

As a further validation of the selection techniques, the trained models were used in 1000 atom MD
simulations at 1400 K in an NVT ensemble run for up to 1000 ps. This investigation exposes the
models to a number of varying configurations from large regions of configuration space thereby
assessing robustness. In order to eliminate possible algorithm dependence, neural network and
Gaussian process regression models were used (see Appendix). The radial distribution functions
(RDF) of these simulations were then compared with BMHTF model under the same conditions. We
see that, in the case of the global data-selection methods, the radial distribution functions contain
non-physical short range peaks implying the training data did not sufficiently represent the potential
energy surface. In the case of the atomic energies however, no such short range peaks arise and the
function fits that of the reference BMHTF potential. The success of the atomic property selection
methods highlights the robustness that accompanies the low RMSE and Max errors seen in Figure
2.

4 CONCLUSION

We have shown that data selection based on atomic energies or forces yields more accurate inter-
atomic potentials than those trained on global energies or randomly chosen configurations. We
found that the calculated RMSE values of models trained using the atomic energies data selection
method was consistently lower than any other approach. Furthermore, potentials trained on global
properties produced non-physical results when used in an MD simulation, whereas those trained
on atomic properties reproduced the reference data. These results suggest that selecting data based
on atomic properties results in more accurate and robust machine learned potentials as opposed to
global property selection methods.
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A APPENDIX

A.1 SCHNET-HYPERPARAMETERS

The Neural Network models are based on the SchNet-architecture (Schütt et al. (2017), Schütt et al.
(2017)). All hyperparameters used for the different model sizes are summarized in Table 1 and 2. If
not specified, the default value was chosen.

A.2 GAP-HYPERPARAMETERS

To generate the GPR models the GAP suite (Bartók et al. (2010), Bartók et al. (2013)) of the QUIP
software package was used. GAP suite is available for non-commercial use from www.libatoms.org.
The model uses a the SOAP descriptor. Table A.2 shows the hyperparameters for the SOAP descrip-
tor.
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Table 1: Hyperparameters of the SchNet-Model types

NAME Small Medium Large

n interactions 3 4 4
n atom basis 32 48 64
n filters 32 64 128
n gaussians 3 48 64

n in 32 48 64
elements (11, 17) (11, 17) (11, 17)
n neurons [48, 48] [128, 64, 32] [128, 128, 64, 32]
n layers 3 4 5

Table 2: Training hyperparameters and other parameters of all SchNet-Models

NAME VALUE

cutoff radius 6.0 Å
optimizer Adam

learning rate 5e-4

Table 3: Hyperparameters of the SOAP descriptor for the GAP model

NAME VALUE

n max 8
l max 6

atom sigma 0.825
zeta 4
cutoff 6.5

cutoff transition width 0.5
delta 1.0
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