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ABSTRACT

Neural network (NN)-based interatomic potentials provide fast prediction of po-
tential energy surfaces with the accuracy of electronic structure methods. How-
ever, NN predictions are only reliable within well-learned training domains, and
show volatile behavior when extrapolating. Uncertainty quantification through
NN committees identifies domains with low prediction confidence, but thoroughly
exploring the configuration space when training NN potentials often requires slow
atomistic simulations or exhaustive sampling. Here, we employ adversarial at-
tacks with a differentiable uncertainty metric to sample new molecular geometries
and bootstrap NN potentials. In combination with an active learning loop, the ex-
trapolation power of NN potentials is improved beyond the original training data
with few additional samples. The framework is demonstrated on a toy potential
and the ammonia molecules, leading to better sampling of energy states and ki-
netic barriers without extensive prior data on the relevant geometries.

1 INTRODUCTION

Neural networks (NNs) have been widely used to fit interatomic potentials with high accuracy and
low inference cost (Behler & Parrinello, 2007). Despite their remarkable capacity to interpolate
between data points, NNs are known to perform poorly outside of their training domain (Barrett
et al., 2018) and may fail catastrophically for rare events. To avoid exhaustive exploration of input
space, quantifying model uncertainty becomes key, since it allows distinguishing new inputs that are
likely to be informative and worth labeling with ab initio simulations, from those close to config-
urations already represented in the training data. In particular, NN committees have been used as
a strategy to quantify epistemic uncertainty (Lakshminarayanan et al., 2017). However, even when
uncertainty estimates are available to distinguish informative from uninformative inputs, machine
learning (ML)-based potentials still rely on atomistic simulations to generate new trial configura-
tions (Shapeev et al., 2020). With dynamics simulations executed with NN potentials, new outputs
are either correlated to the training data or unphysical due to unstable trajectories. Hence, inverting
the problem of exploring the configuration space with NN potentials would allow for a more efficient
sampling of transition states and dynamic control (Noé et al., 2019).

In this work, we propose an inverse sampling strategy for NN-based atomistic simulations by per-
forming gradient-based optimization of a differentiable uncertainty metric. Building on the concept
of adversarial attacks from the ML literature (Szegedy et al., 2014; Goodfellow et al., 2015), new
molecular conformations are sampled by backpropagating atomic displacements that maximize the
uncertainty of an NN committee while balancing thermodynamic likelihood. These new configura-
tions are then evaluated using atomistic simulations and used to retrain the NNs in an active learning
loop. The technique is able to bootstrap training data for NN potentials starting from few configura-
tions, improve their extrapolation power, and efficiently explore the configuration space. This work
provides a new method to explore potential energy landscapes without the need for brute-force ab
initio MD simulations to propose trial configurations.
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Figure 1: a, Schematic diagram of the method. Nuclear coordinates of an input molecule are slightly
displaced by δ. Then, a potential energy surface (PES) and its associated uncertainty are calculated
with an NN potential committee. By backpropagating an adversarial loss through the NN commit-
tee, the disturbance δ can be updated using gradient ascent techniques until the adversarial loss is
maximized, thus sampling states that compromise high uncertainty with low energy. b, Schematic
diagram of the active learning loop used to train the NN potential committee. The evaluation can be
performed with classical force fields or electronic structure methods.

2 THEORY

When developing adversarially robust models, the objective is to find the parameters θ that minimize
the loss L subject to a perturbation δ (Tsipras et al., 2018),

min
θ

E
(X,E,F)∼D

[
max
δ∈∆
L (Xδ, Eδ,Fδ; θ)

]
, (1)

with ∆ the set of allowed perturbations, and X and Xδ the original and perturbed geometries from
a dataset D, respectively, with their corresponding energies (E, Eδ) and forces (F, Fδ). In the
ML literature, ∆ is often chosen as the set of `p-bounded perturbations for a given ε, ∆ = {δ ∈
R | ||δ||p ≤ ε}.
We propose a method to obtain adversarially-robust NN potentials by combining adversarial attacks,
uncertainty quantification, and active learning. In this framework, an adversarial attack maximizes
the uncertainty in the property under prediction (Fig. 1a). Then, ground-truth properties are gen-
erated for the adversarial examples using density functional theory (DFT) or classical force fields.
Finally, the NN committee is retrained on the original dataset and the newly-sampled geometries,
restarting the loop (Fig. 1b). New rounds of this active learning can be performed until the test error
is sufficiently low or the phase space is explored to a desirable degree.

Within this pipeline, new geometries are sampled by performing an adversarial attack that maxi-
mizes an adversarial loss such as

max
δ∈∆
Ladv(X, δ; θ) = max

δ∈∆
σ2
F (Xδ), (2)

where σ2
F is the force variance.

In the context of atomistic simulations, the perturbation δ is applied only to the nuclear coordinates,
Xδ = (Z,R + δ), δ ∈ Rn×3. The set ∆ can be defined by appropriately choosing ε, the maximum
p-norm of δ. However, in atomistic simulations, it is often interesting to express these limits in terms
of the energy of the states to be sampled, and the sampling temperature. The probability P that a
state Xδ with predicted energy Ē(Xδ) can be sampled, disregarding entropic contributions, is
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Figure 2: a, Evolution of the PES of a 2D double well predicted by an NN committee. Adversarial
examples (black dots) are distortions from original training data (white dots) or past adversarial
examples (gray dots) that maximize the adversarial lossLadv. The plotting intervals are [−1.5, 1.5]×
[−1.5, 1.5] for all graphs. The generation of the NN committee is shown in the top left corner of each
graph. b, Evolution of the root mean square error (RMSE), number of training points and energy
of the sampled points for adversarial attack strategy (red) and randomly distorting the training data
(blue). The solid line is the median from more than 100 experiments, and the shaded area is the
interquartile region.

P (Xδ) =
exp

(
− Ē(Xδ)

kT

)
∑

(X,E,F)∈D

exp

(
− E

kT

) , (3)

with k being the Boltzmann constant and the denominator is analogous to the partition function of
system at a given temperature T constructed from the available ground truth dataD. Finally, instead
of limiting the norm of δ, the adversarial objective can be modified to limit the energy of sampled
states by combining Eqs. (2) and (3),

max
δ
Ladv(X, δ; θ) = max

δ
P (Xδ)σ

2
F (Xδ). (4)

Using automatic differentiation strategies, the value of δ at iteration i can be obtained using gradient
ascent techniques,

δ(i+1) = δ(i) + αδ
∂Ladv

∂δ
, (5)

where αδ is the learning rate for the adversarial attack.

3 RESULTS

3.1 DOUBLE WELL POTENTIAL

As a proof-of-concept, the adversarial sampling strategy is demonstrated in the two-dimensional
(2D) double well potential. To investigate the exploration of the phase space, the initial data is
placed randomly in one of the basins of the potential (Fig. 2a). Then, a committee of feedforward
NNs is trained to reproduce the potential using the training data (see Methods). At first, the NN
potential is unaware of the second basin, and predicts a single well potential in its first generation.
As such, an MD simulation using this NN potential would be unable to reproduce the free energy
surface of the true potential. Nevertheless, the region corresponding to the second basin is of high
uncertainty when compared to the region where the training set is located. The adversarial loss
encourages exploring the configuration space away from the original data, and adversarial samples
that maximize Ladv are evaluated with the ground truth potential, then added to the training set of
the next generation of NN potentials. Fig. 2a shows the results of the training-attacking loop for the
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Figure 3: a, UMAP plot for the SOAP-based similarity between ammonia geometries. Both axes
are on the same scale. b, Distribution of DFT energies for conformations sampled with different
methods. The horizontal line is the median, the box is the interquartile region and the whiskers span
the range of the distribution. c, Relationship between DFT energy and root mean square deviation
(RMSD) of a geometry with respect to the ground state structure of ammonia. The color scheme
follows the legend of a. d, Energy barrier for the nitrogen inversion calculated with NEB using DFT
or using the NN committee. e, Evolution of the PES projected onto the CVs (Z, R) for ammonia.
The generation of the NN committee is shown in the top left corner of each plot. The scale bar of
energies is plotted with the function log10(1+E), and all energy contour plots have the same levels.
Random geometries were generated with σδ = 0.3 Å (see Methods). f, RMSE between the NN
and DFT PES for each NN potential when a maximum energy is imposed for the DFT PES. f, inset,
fraction of stable MD trajectories generated using each NN committee as force field.

NN potential after several generations. As the AL loop proceeds, the phase space is explored just
enough to accurately reproduce the 2D double well, including the energy barrier and the shape of
the basins.

To verify the effectiveness of the adversarial sampling strategy, the evolution of the models is com-
pared with random sampling. While the former is obtained by solving Eq. (4), the latter is obtained
by randomly selecting 20 different training points from the training set and sampling δ from a uni-
form distribution, δ ∼ U (−σδ, σδ). To perform a meaningful statistical analysis on the methods,
more than 100 independent active learning loops with different initializations are trained for the
same 2D well potential (Fig. 2b). Overall, the root mean square error (RMSE) between the ground
truth potential and the predicted values decreases as the space is better sampled for both methods.
However, although the random sampling strategy collects more data points, the median RMSE of
the final generation is between two to three times higher than the adversarial attack strategy. More-
over, the median sampled energy is one order of magnitude higher for randomly-sampled points. As
several randomly-sampled points travel to places outside of the bounds of the double well shown
in Fig. 2a, the energy quickly increases, leading to high-energy configurations. This is often the
case in real systems, in which randomly distorting molecules or solids rapidly lead to high-energy
structures that will not be visited during production simulations. As such, this toy example suggests
that the adversarial sampling method generates thermodynamically likely structures, requires less
ground-truth evaluations and leads to better-trained NN potentials compared to randomly sampling
the space.
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3.2 NITROGEN INVERSION ON AMMONIA

As an example, we bootstrap an NN potential to study the nitrogen inversion in ammonia. An NN
committee consisting of SchNet models (Schütt et al., 2018) is first trained with Hessian-displaced
geometries data (see Methods). Then, new geometries are sampled by performing an adversarial
attack on the ground state geometry, and later evaluated using DFT. After repeating the train-attack-
evaluate loop twice, the landscape of conformations is analyzed and compared with random dis-
placements. Fig. 3a shows a UMAP visualization (McInnes et al., 2018) of the conformers, as
compared by their similarity using the Smooth Overlap of Atomic Positions (SOAP) representation
(Bartók et al., 2013; De et al., 2016). A qualitative analysis of the UMAP plot shows that adversar-
ial attacks from both generations rarely resemble the training set in terms of geometric similarity.
In addition, small values of random distortions δ ∼ U(−σδ, σδ) for a uniform distribution U cre-
ate geometries that are very similar to Hessian-displaced ones. While higher values of σδ (e.g.
σδ = 0.3 Å) enable a larger conformational space to be explored, geometries with very high energy
are also sampled (Fig. 3b). On the other hand, energies of adversarially created conformations have
a more reasonable upper bound. Fig. 3c compares the degree of distortion of the geometries with
respect to their energies. It further confirms that the adversarial strategy navigates the conforma-
tional space to find highly distorted states while staying within reasonable energy bounds. Once the
adversarially-sampled conformations are used in training, predictions for the energy barrier in the
nitrogen inversion improve substantially (Fig. 3d). While the first generation of the NN potential
underestimates the energy barrier by about 1 kcal/mol with respect to the DFT reference, the pre-
diction from the second and third generations have less than 0.25 kcal/mol of error for the inversion
barrier. In contrast, predictions from an NN committee trained on randomly-sampled geometries
show much higher error. This suggests that adversarial attacks were able to sample geometries sim-
ilar to the transition state of the nitrogen inversion reaction and accurately interpolate the energy
barrier without the need to explicitly add this reaction path into the training set.

The evolution of the phase space of each NN committee is further compared in the projected PES
of Fig. 3e (see Methods). Two collective variables (CVs) are defined to represent the phase space
of this molecule: the radius of the circumference defined by the three hydrogen atoms (R) and
the distance between the nitrogen atom and the plane defined by the three hydrogens (Z) (see also
Fig. 4). Fig. 3e shows these CVs normalized by the values found in the ground state geometry.
Adversarial attacks expand the configuration space used as train set for NN committees and bring
the phase space closer to the ground truth, thus locally lowering the uncertainty of forces. Fig. 3f
shows the RMSE between the NN- and DFT-predicted energies for the phase space of Fig. 3e.
When energies smaller than 5 kcal/mol are compared, the NN committees from all stages of the
active learning loop display much smaller RMSE than the committee trained on random geometries,
probably due to the presence of Hessian-displaced structures in their training set. Moreover, the
third generation of NN committees offers the best predictions of energies for structures with DFT
energy up to 40 kcal/mol. Finally, the adversarial training yields models capable of performing
stable MD simulations with less than 150 training points. 83% of the trajectories produced by the
third generation of adversarially trained NN committees are stable, even though the NN-based MD
geometries include data points originally not in the training set (Fig. 5). In contrast, only 63% of
the trajectories are stable when the NN committee trained on random geometries is used to perform
the simulations. This indicates that the adversarial sampling strategy enhances the robustness of
NN-based MD simulations by seeking points less likely to be sampled in unbiased MD simulations.

4 CONCLUSIONS

In summary, we proposed a new sampling strategy for NN potentials by combining uncertainty
quantification, adversarial attacks and active learning. By maximizing the uncertainty of NN predic-
tions through a differentiable metric, new geometries can be sampled without the need for atomistic
simulations. This work presents an efficient way to train NN potentials, allowing NN potentials to
be bootstrapped with less data without compromising the final accuracy of the models. The method
will enable the development of robust NN potentials for increasingly complex or reactive systems.
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A APPENDIX

A.1 THEORY

A.1.1 NEURAL NETWORK POTENTIALS

An NN potential is a hypothesis function hθ that predicts a real value of energy Ê = hθ(X) for a
given atomistic configuration X as input. X is generally described by n atoms with atomic numbers
Z ∈ Zn+ and nuclear coordinates R ∈ Rn×3. Atomic forces Fij on atom i and cartesian coordinate
j are obtained by differentiating the output energy with respect to the atomic coordinates rij ,

F̂ij = − ∂Ê

∂rij
. (6)

The parameters θ are trained to minimize the expected loss L given the distribution of ground truth
data (X,E,F) according to the dataset D,

min
θ

E
(X,E,F)∼D

[L (X,E,F; θ)] . (7)

During training, the loss L is usually computed by taking the average mean squared error of the
predicted and target properties within a batch of size N ,

L =
1

N

N∑
i=1

[
αE ||Ei − Êi||2 + αF ||Fi − F̂i||2

]
, (8)

where αE and αF are coefficients indicating the trade-off between energy and force-matching dur-
ing training (Schütt et al., 2018). The training proceeds using stochastic gradient descent-based
techniques.

A.1.2 UNCERTAINTY QUANTIFICATION

To create a differentiable metric of uncertainty, NN commitees are typically implemented by training
different hθ and obtaining a distribution of predictions for each inputX . GivenM models, the mean,
Ē(X) and variance, σ2

E(X) of energy, as well as for forces, F̄(X) and σ2
F (X), of an NN potential

ensemble can be computed as

Ē(X) =
1

M

M∑
m=1

Ê(m)(X) ; σ2
E(X) =

1

M − 1

M∑
m=1

||Ê(m)(X)− Ē(X)||2, (9)

F̄(X) =
1

M

M∑
m=1

F̂(m)(X) ; σ2
F (X) =

1

M − 1

M∑
m=1

 1

3n

∑
i,j

||F̂ (m)
ij (X)− F̄ij(X)||2

 . (10)

Whereas the training objective (7) rewards approaching mean energies or forces to their ground truth
values, this is not guaranteed for regions outside of the training set.

A.2 METHODS

A.2.1 DOUBLE WELL POTENTIAL

The double well potential adopted in this work is written as the following polynomial:

E(x, y) = 10x4 − 10x2 + 2x+ 4y2. (11)

Initial training data was generated by randomly sampling up to 800 points with independent coordi-
nates according to a uniform distribution U (−1.5, 1.5), and selecting only those with energy lower
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than −2. This allows us to select only data points lying in the lowest energy basin of the double
well, creating an energy barrier between the two energy minima.

Five feedforward NNs with four layers, softplus activation and 1,024 units per layer were trained
using the same train/test splits of the dataset. The NNs had different initial weights. The dataset was
split in the ratio 60:20:20 for training : validation : testing, with a batch size of 35. The training
was performed for 600 epochs with the Adam optimizer and a learning rate of 0.001. The reported
RMSE is the mean squared difference between the average predicted energy Ē and the ground truth
potential E as evaluated on a 100× 100 grid in the interval [−1.5, 1.5]× [−1.5, 1.5].

Adversarial attacks were performed with a normalized sampling temperature of 5 (Eq. 11 units)
for 600 epochs, learning rate of 0.003 and the Adam optimizer. Deduplication via hierarchical
clustering was performed using a threshold of 0.02 for the distance and the 80th percentile of the
train set variance.

Random distortions were performed in each generation by displacing the (x, y) coordinates of train-
ing data points (or past random samples) by δ ∼ U (−1.0, 1.0). After deduplication via hierarchical
clustering and uncertainty percentile as performed for adversarial attacks, up to 20 points were ran-
domly selected from the resulting data. Distortions smaller than 1.0 were often unable to efficiently
explore the PES of the double well, landing in the same basin.

A.2.2 ATOMISTIC SIMULATIONS

Initial molecular conformers were generated using RDKit (Landrum, 2006) with the MMFF94 force
field (Halgren, 1996; Tosco et al., 2014). DFT structural optimizations and single-point calculations
were performed using the BP86-D3/def2-SVP (Becke & Becke, 1988; Perdew, 1986; Weigend &
Ahlrichs, 2005) level of theory as implemented in ORCA (Neese, 2012; 2018). NEB calculations
(Jónsson et al., 1998; Henkelman et al., 2000; Henkelman & Jónsson, 2000) were performed with
11 images using the FIRE algorithm (Bitzek et al., 2006) as implemented in the Atomic Simulation
Environment (Hjorth Larsen et al., 2017). Hessian-displaced geometries were created by randomly
displacing the atoms from their ground state conformation in the direction of normal mode vectors
with temperatures between 250 and 750 K. In total, 78 training geometries were used as initial
dataset.

For each generation, five NNs with the SchNet architecture (Schütt et al., 2018) were employed.
Each model used four convolutions, 256 filters, atom basis of size 256, 32 learnable gaussians and
cutoff of 5.0 Å. The models were trained on different splits of the initial dataset (ratios 60 : 20 : 20
for train : validation : test) for 500 epochs, using the Adam optimizer with an initial learning rate of
3× 10−4 and batch size of 30. A scheduler reduced the learning rate by a factor of 0.5 if 30 epochs
passed without improvement in the validation set. The training coefficients αE and αF (see Eq. 8)
were set to 0.1 and 1, respectively.

Adversarial attacks were initialized by displacing the ground state geometry of ammonia by δ ∼
N (0, 0.01 Å) for each coordinate. The resulting attack δ was optimized for 60 iterations using the
Adam optimizer with learning rate of 0.01. The normalized temperature kT was set to 20 kcal/mol to
ensure that adversarial attacks were not bound by a low sampling temperature, but by the uncertainty
in force predictions. 30 adversarial attacks were sampled for each generation.

Random distortions were generated by displacing each coordinate of the ground state geometry of
ammonia by a value of δ ∼ U(−σδ, σδ). The values of σδ = 0.1 Å and σδ = 0.3 Å were adopted.
30 (100) random samples were created for σδ = 0.3 Å (σδ = 1.0 Å).

NN-based MD simulations were performed in the NVT ensemble with Nosé-Hoover dynamics (Mel-
chionna et al., 1993), 0.5 fs timesteps, and temperatures of 500, 600, 700, 800, 900, and 1000 K. 100
5 ps-long trajectories were performed for each NN committee and temperature. The ground state
geometry of ammonia was used as initial configuration for all MD calculations. Trajectories were
considered as unphysical if the distance between hydrogen atoms was closer than 0.80 Å or larger
than 2.55 Å, or if the predicted energy was lower than the ground state energy (0 kcal/mol for the
reference adopted in this work).

SOAP vectors were created using the DScribe package (Himanen et al., 2020). The cutoff radius was
set as 5 Å, with spherical primitive gaussian type orbitals with standard deviation of 1 Å, basis size
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of 5 functions, and Lmax = 6. The vectors were averaged over sites before summing the magnetic
quantum numbers.

The projected PES shown in Fig. 3e is constructed by evaluating the NN potentials on symmetrical
geometries generated for each tuple (Z, R). As such, train points and adversarial attacks are pro-
jected onto this space even though the conformers display distortions not captured by the CVs (Z,
R) (see Fig. 4). The RMSE between the projected PES of the NN potential and DFT calculations is
taken with respect to these symmetrical geometries.

A.3 SUPPLEMENTARY FIGURES

Figure 4: a, Example of ammonia geometries created for different values of (Z, R). b, Different
distortions of the ground state geometry (outlined in black) that have the same values of (Zeq, Req)
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Figure 5: Density of frames for stable (left) and unstable (right) molecular dynamics trajectories
obtained with the third generation of NN potentials. Contour lines indicate constant energy levels in
the phase space. Points for 100 adversarial attacks performed for the third generation indicate that
the adversarial strategy samples points not well explored by the NN potential in MD trajectories.
Only a subset of the phase space of unstable trajectories is shown, as several data points fall outside
of this region.
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