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ABSTRACT

We present a data-driven model for fluid simulation under Lagrangian representa-
tion. Our model uses graphs to describe the fluid field, where physical quantities
are encoded as the node and edge features. Instead of directly predicting the accel-
eration or position correction given the current state, we decompose the simulation
scheme into separate parts - advection, collision, and pressure projection. For these
different reasoning tasks, we propose two kinds of graph neural network structures,
node-focused networks, and edge-focused networks. By introducing physics prior
knowledge, computational costs in the training and inference stage are significantly
reduced. Our tests show that the learned model can produce accurate results and
remain stable in scenarios with a large number of particles and different geometries.
Unlike many other data-driven models, further tests demonstrate that our model is
able to retain many important physical properties of incompressible fluids, such as
minor divergence and reasonable pressure distribution. Additionally, our model
can adopt a range of time step sizes different from ones using in the training set,
which indicates its robust generalization capability.

1 INTRODUCTION

For many science and engineering problems, fluids are an essential integral part. How to simulate fluid
dynamics accurately has long been studied by researchers and a large class of numerical models have
been developed. However, computing high-quality fluid simulation is still computationally expensive
despite the advances in computing power. Also, the time of calculation usually increases drastically
when the resolution of the simulating scene scales up. A common way to alleviate computing costs is
to use reduced-order models. Recent progress in the machine learning domain opens up the possibility
of employing learning algorithms to learn and predict fluid dynamics in an efficient way.

In this paper, we propose a graph-based data-driven fluid dynamics model, Fluid Graph Networks
(FGN), which consists of simple multi-layer perceptron (MLP) and graph inductive architectures.
The proposed model can retain the physical properties of the system without direct supervision (i.e.
without adding a loss term based on these metrics), like low velocity-divergence and constant particle
density. It can also predict reasonable pressure distribution. Further experiments demonstrate that our
model can remain stable and accurate in the long-term simulation of scenarios involving different
geometries.

2 RELATED WORKS

Our model is built upon the Lagrangian representation of fluid, where continuous fluids are discretized
and approximated by a set of particles. The most prominent advantage of the Lagrangian method is
that the particle boundary is the material interface, which makes boundary conditions easy to impose,
especially when the material interface is large and changing violently. A well-known Lagrangian
method is Smooth Particle Hydrodynamics (SPH)(Monaghan, 1988). SPH and its variants are widely
used in numerical physics simulation, including fluid dynamics under various conditions (Müller
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et al., 2003; Koshizuka and Oka, 1996; Becker and Teschner, 2007; Solenthaler and Pajarola, 2009;
Bender and Koschier, 2015).

High-fidelity simulation based on traditional methods usually demands very fine resolution at time
and space, which is computationally expensive. Modeling fluid dynamics in a data-driven way has
been explored as an attractive alternative. With advances in machine learning algorithms, many data-
driven models employing machine learning algorithms have been built to improve the computational
efficiency of fluid simulation (Ladický et al., 2015; Tompson et al., 2016; Xiao et al., 2020; Wiewel
et al., 2018; Morton et al., 2018; de Avila Belbute-Peres et al., 2020).

The building blocks of this work are neural networks built upon graphs (Scarselli et al., 2009).
Learning and reasoning particle dynamics under graph representation has the following benefits
and conveniences. First, particle-based methods model physics phenomena as interactions between
particles within a local area. This imposes an inductive bias for learning under the Lagrangian
framework: dynamics have a strong locality. The locality of unstructured data under Lagrangian
representation can be captured by message passing and aggregation process on graphs, such as
GCN and other variants (Kipf and Welling, 2016; Hamilton et al., 2017). Second, unlike Eulerian
grid-based methods, Lagrangian particle-based methods do not have an explicit and structured grid,
which makes standard Convolutional Neural Network (CNN) cannot be directly applied to particles
without feature processing (Wang et al., 2018; Ummenhofer et al., 2020). Third, many dynamics
are based on pairwise relations between particles, like collision, which can be emulated by message
passing via edges in graph neural networks. Given these factors, recently there have been a large
array of works that use graph neural networks to learn and reason about the underlying physics of
interacting objects and particles. (Battaglia et al., 2016; Chang et al., 2016; Sanchez-Gonzalez et al.,
2018; Li et al., 2018; Mrowca et al., 2018)

3 MODEL

3.1 FLUID DYNAMICS

The governing equation for incompressible fluids is the Navier-Stokes equation and the continuity
equation as follows (Batchelor, 2000):

Du

Dt
= −∇p

ρ
+ ν∇2u + g, (1)

∇ · u = 0. (2)

Here, we adopt the Lagrangian framework to track and describe the fluids, and we discretize field
function and operator following the convention in SPH (See appendix A.1 for the definition of SPH).

3.2 MODEL

Fluids are time-dependent dynamical systems, where location of particles, r, is described by equation
of form: dr/dt = f(r). Here we assume the system is Markovian, that is, the state of the system at
time step n+ 1 depends only on the state of the previous time step n. The update mechanism in our
model can be defined as:

{xn+1,vn+1} = Gθ ({xn,vn}) . (3)

Here {xn,vn} denotes the positional information and velocity of fluid field at time step n. Data-
driven model Gθ, parameterized by θ , maps the state of time step n to time step n+ 1.

We propose two types of graph neural networks to emulate the different physical processes involved
in fluid dynamics. They can be divided into two types of graph networks (GN) according to the
network structure (Battaglia et al., 2018).

Node-focused Graph Network We use node-focused GN to predict advection and projection
process in fluid simulation. Advection net is responsible for the prediction of advection effect and
pressure net is responsible for pressure projection. Considering a particle i, the node-focused graph
network first aggregates node features from neighbor particles {vj |∀j ∈ N (i)} and output node
embedding fi. The embedding fi will then be passed to a processor gR, which will predict the
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Figure 1: (a) Schematic of our FGN model. Gadv applies the effect of body force and viscosity to the
fluids. Gpres predicts the pressure. Gcol handles collision between particles. (b) In a node-focused
network, input is represented as node features and then passed to a shared processor. (c) In an
edge-focused network, input is represented as edge features of a directed graph, the edge features are
then passed to a shared processor.

desirable physical quantities oi (i.e. acceleration a in advection net and pressure p in pressure net).
The whole message passing procedure can be defined as:

oi = gR (gA (Vi)) , Vi = {vj}∀j∈N (i). (4)

Edge-focused Graph Network We use edge-focused GN to drive away particles that are too close
to each other, which emulates the elastic collision process. In collision net, relative features, eij
(relative positions, relative velocities between particle i and j), are passed to processor fR as edge
features. These relative features impose spatial invariance on the model. The processor will output
the edge embedding rij between each pair of nodes. Lastly, edge embedding rij is aggregated via
aggregator fA, to gather the influence from all nearby particles and predict an overall effect oi on the
center particle i. The message passing function in a layer of edge-focused graph network is defined
as:

oi = fA (fR (Ei)) , Ei = {eij}∀j∈N (i). (5)

4 IMPLEMENTATION

4.1 UPDATE SCHEME

The single-step update scheme in our model is similar to many fluid simulation methods, which is an
advection-projection scheme. In general, given the state (position xn and velocity vn) of the current
time step n, we derive the state of next time step n + 1 by passing the state information through
advection net, collision net, and pressure net sequentially (detailed description of update scheme can
be found in A.1).

4.2 NETWORK ARCHITECTURES

We use MLPs as the node update function for the node-focused networks, and we don’t use any
node update function in the edge-focused network. In the edge-focused network, the edge message
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Case Model Density error Velocity divergence
Average Chamfer

distance (mm)
Mean Max Mean Max Mean Max

Dam Collapse
FGN (this work) 0.0461 0.0900 0.0195 0.0280 24.2 30.1
Ground Truth 0.0380 0.0710 0.0190 0.0268 - -

Water Fall
FGN (this work) 0.0541 0.1350 0.0207 0.0431 24.8 29.6
Ground Truth 0.0429 0.0966 0.0196 0.0398 - -

Table 1: Quantitative accuracy analysis on different metrics (Detailed comparisons against other
data-driven models and error trend plot can be found in A.3).

Model Parameters Model inference time (ms) NNS time (ms)
FGN (this work) 41996 5.7 46.4

GNS 1406272 44.6 33.1
CConv 692902 28.9∗ 24.7∗

MPS (ground truth) - 313.2 42.3

Table 2: Runtime analysis of different model. We report the total amount of trainable parameters, the
inference time and nearest neighbor searching time in a single frame of each model. The test was
carried out on a dam collapse scene containing approximately 40k fluid particles. Note that in CConv,
the network and neighbor searching method are based on TensorFlow and Open3D (denoted with *).

function is an MLP that takes edge features as input. In the node-focused network, we calculate
the edge messages by calculating a weighted summation of node features on all neighboring nodes
(this is similar to using smooth kernel instead of in-degree of nodes as weight function in GCN). A
detailed description of message passing function implementation can be found in A.1.

5 EXPERIMENTS

5.1 TRAINING

We use the Moving Particle Semi-implicit method (MPS) (Koshizuka and Oka, 1996) with an
improved pressure solver (Lee et al., 2011) to generate high-fidelity simulation data of incompressible
flow. We train three networks, advection net, collision net, and pressure net separately. Each network
is trained in a supervised way by optimizing the mean squared error between prediction ŷ and ground
truth y (See A.2 for full detail of training dataset settings and training strategy). We implement our
model with PyTorch and PyTorch Geometric (Fey and Lenssen, 2019).

5.2 EVALUATION

We first qualitatively validate our model by visualizing its simulation sequences in testing scenarios
1. We challenge it with different geometries. Then we measure its position error and several other
physics metrics quantitatively. Besides the comparison against ground truth data, we also compare
our model to two recent works, graph network simulator (GNS), and continuous convolution (CConv)
(Ummenhofer et al., 2020; Sanchez-Gonzalez et al., 2020), which built purely data-driven end-to-end
models to simulate fluids under the Lagrangian framework. We benchmark different models in terms
of running time (Table 2). In general our model can learn to emulate physic processes involved
in fluid dynamics in a computationally efficient way. Although we do not directly supervise on
important physics metrics like velocity divergence and particle density distribution , the model gives
relatively high-fidelity results in terms of these metrics (Table 1). See A.5 for experiments detail and
model generalization to different conditions.

6 CONCLUSION

In this paper, we present a data-driven Lagrangian fluid model for incompressible fluid simulation
by decomposing simulation scheme as separate reasoning tasks based on Navier-Stokes equation. It
can preserve many essential physical properties of the fluid field such as low volume compression,

1Video link: https://sites.google.com/view/fluid-graph-network-video/home
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and predict reasonable pressure distribution. Our model also has generalization capability, where it
can remain stable when extrapolating to a wide range of different geometries and adopting different
time step sizes. In general, our work is an advance in learning on unstructured data with graph neural
networks, and enriches the paradigm of combining learning-based methods with physical models as
well.
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APPENDIX A

A.1 IMPLEMENTATION DETAILS

Graph construction We build the graph by establishing edges between particles within limit radius.
We perform the neighborhood searching on GPU by using cell sort algorithm. All the edge attributes
are stored in sparse matrices. Although the limit radius does not have significant impact on training
loss and larger limit radius will increase the computing cost drastically, we found that small limit
radius can influence the long-term stability of the model. For advection net and pressure projection
net, we select the limit radius to be three times the particle diameter D (D = 0.050m), and 0.9D for
collision net.

Numerical model In general, we calculate all the gradient operators and field function’s value
based on numerical model of SPH.

In SPH, an arbitrary scalar (or vector) field A (r) at location r can be represented by a convolution:

A (r) =

∫
A (r′)W (|r− r′| , h) dV (r′) , (6)

where W is weighting function or smooth kernel as defined in SPH, h is the smoothing length,
which defines the range of particles to be considered and V (r′) is the volume at r. Numerically, the
interpolation can be approximated by replacing the integration with a summation.

In SPH model, particle density is defined as:

ni =
∑
i 6=j

W (|ri − rj | , h),∀j ∈ N (i). (7)

For scalar quantity φi at location ri, we approximate its gradient by:

∇φi =
d

n∗

∑
j

(φj − φi)∇Wij , (8)

where n∗ is the constant particle number density derived by calculating the maximum particle number
density at the initial frame, d is the dimension of the problem, Wij denotes the smooth kernel function
value between particle i and j. Similarly velocity divergence is defined as:

∇ · vi =
d

n∗

∑
j

(vj − vi) · ∇Wij , (9)

We adopt the same smooth kernel function from Koshizuka and Oka (1996), which is very simple to
evaluate.

Wij =

{
h

||ri−rj ||2 − 1 if ||ri − rj ||2 < h

0 if ||ri − rj ||2 ≥ h
(10)

Update scheme We update the state of fluid field by passing input to advection net, collision net
and pressure net sequentially. The input features to advection net are positions and velocities of
particles, [xn,vn], along with g, which indicates the external body force per mass of fluid, and
viscosity parameter ν, which denotes the magnitude of fluid viscosity. The advection net predicts
acceleration of particles:

aadv = Gadv (xn,vn,g, ν) , (11)

and updates the state of fluid particles to an intermediate state [x∗,v∗].

v∗ = vn + aadv∆t, (12)
x∗ = xn + v∗∆t. (13)

Where aadv = [aadv
1 , ...,aadv

N ], xn = [xn1 , ...,v
n
N ], vn = [vn1 , ...,v

n
N ] for particles i ∈ {1, .., N}. We

will use the same notation throughout illustration.
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The collision net takes relative positions and velocities between particles, [x∗i −x∗j ,v
∗
i −v∗j ] as input,

and predicts correction to the velocity,

∆v = Gcol(x
∗
r ,v
∗
r), (14)

where [x∗r ,v
∗
r ] denotes the relative position and velocity in intermediate state. The velocity is then

updated with predicted correction:
v∗∗ = v∗ + ∆v. (15)

The updated intermediate position and velocity are taken as input by the pressure net, along with
particle number density ρ.

p̂ = Gpres(x
∗,v∗∗,ρ). (16)

The state of fluid field is then updated to next time step n+ 1,

vn+1 = v∗∗ − ∇p̂
ρc

∆t, (17)

xn+1 = x∗ + vn+1∆t. (18)

Where p̂ = [p̂1, ..., p̂N ], ρ = [ρ1, ..., ρN ], ρc is the density parameter of fluid. Predicting pressure of
fluid field using particle density and velocity is based on the observation that advection will incur a
temporary compression on fluid body, which means fluid density has changed. Therefore the goal of
pressure net is to impose a pressure projection to mitigate these deviations.

During the above calculation, the global positional information is only used to construct graph on
fluid particles and will not be passed into aggregator and processor as features. The relative position
and particle density are normalized before input.

Message passing function For node-focused graph network, to derive a smooth response of the
field with respect to spatial location, the edge message passing, aggregation and node update from
layer l − 1 to l is defined as:

a
(l)
i =

∑
f

(l−1)
j W (|ri − rj | , h)∑
W (|ri − rj | , h)

+ f
(l−1)
i ,∀j ∈ N (i), (19)

f
(l)
i = σ

(
W · a(l)

i

)
, (20)

where the aggregator sums up the features f (l−1)
j from neighbor vertices {vj |j ∈ N (i)} using smooth

kernel as weight function, and here self-connection is added to every vertex. Linear transformation
W and non-linear transformation σ are then applied to the aggregated features. In practice we found
that two layers of message passing plus a MLP processor which takes node embedding output from
previous layer as input is enough for the model to produce reasonably accurate output (Adding more
aggregation layers does not bring in significant improvements).

For edge-focused network, we do not define any node update, where we only do update on edges and
aggregate them to nodes in the final layer. the edge message function is a MLP, Θ, which takes edge
features as input.

rji = Θ(eji), (21)

As for the edge-focused The aggregation in the last layer is simply defined as:

ai =
∑

j∈N (i)

W · rji, (22)

where rji is edge feature processed by processor, W is a linear transformation matrix. The aggrega-
tion in the edge-focused network is at the last layer, so no non-linearity is included here.

The processors in both networks are implemented as shared MLP, where they are shared among
nodes or edges depending on network types (e.g. in the node-focused network, the processor is a
MLP shared among each node). In a node-focused network, the processor has three hidden layers,
with the input node embedding f of size 128. In an edge-focused network, the processor has four
hidden layers, with input edge attributes [xr,vr] of size 6.
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A.2 TRAINING

Dataset Generation We use MPS to generate ground truth and reference sequence. MPS is a
numerical method based on SPH which prioritizes accuracy over calculation speed. It enforces the
incompressibility of the fluid field by solving the pressure Poisson equation. We created 20 scenes
by randomly placing fluid blocks, solid obstacles, initializing fluid particles with random velocity
We place one or two of the following basic obstacles (as shown in Figure 2) in training scenes. In
addition to obstacles, each scene is a cubic box (80x80x40) containing a fluid block (25x25x10) (as
shown in Figure 2). We place the fluid block at random place in the box and initialize its velocity
of one direction by uniformly sampling from U (0, 0.1). We generated 20 scenes adopting above
settings and simulate each training scene to 1000 time steps with step size dt = 0.002.

Strategy We use mean squared error to measure the distance between ground truth and model
prediction.

L =
1

N

N∑
i=1

||yi − ŷi||22 (23)

We normalize particle density before inputting into the pressure net, which accelerates and stabilizes
training. In the processor, we add LayerNorm (Ba et al., 2016) after activation to each layer (except
for the output layer). The parameters of the model are optimized with Adam (Kingma and Ba, 2014)
optimizer. We implement the model in PyTorch. All the training and experiments are mainly carried
out on NVIDIA GTX 1080Ti GPU.

In each time step of the ground truth simulator, there are mainly three steps. First, advect fluids with
body force and viscosity:

v∗ = vn + aadv∆t, (24)
x∗ = xn + v∗∆t, (25)

and then solve the pressure poisson equation,

∇2p =
1

∆t
∇ · v∗, (26)

lastly,

vn+1 = v∗ − ∇p
ρc

∆t, (27)

xn+1 = x∗ + vn+1∆t. (28)
Here, we use [x∗,v∗,g, ν] as the training features and a∗ (i.e. (v∗ − vn)/∆t) as the training label
for advection net. [x∗,v∗] and particle density ρ (evaluated based on x∗) are the training features
for pressure net, with pressure p as label. To train collision net, we simulate another particle system
that is updated only based on elastic collision rule and applies no other dynamics. We use relative
velocity and position before collision as inputs, and use velocity difference (i.e. ∆v) as output target.

We train each network for 100,000 iterations of gradient updates and decay learning rate from 0.001
to 0.0000625. For the training of three sub-networks (advection net, collision net, pressure net), the
batch size of each network is 16, 4 and 32 respectively. To allow the mini-batching of different graph,
we mini-batch the adjacency matrix of different scenes by creating a large sparse matrix and stacking
adjacency matrix on the diagonals.

A.3 METRICS EVALUATION DETAILS

In the experiments, we first measure our model’s prediction against ground truth solver. We also
include comparison with two purely data-driven models, Graph Network Simulator and Continuous
Convolution, which are end-to-end deep learning models using little physic priors. Ummenhofer et al.
(2020) use the continuous convolutional kernel to learn fluid dynamics and they reported that their
model has outperformed other similar works in this domain. Sanchez-Gonzalez et al. (2020) propose
a graph network-based simulator (GNS) as a general-purpose physic simulator under Lagrangian
representation. Our model and GNS both transform and pass messages of fluid field via graph
structures, but GNS consists of a far larger and deeper network with multiple sub-blocks and thus
contains much more parameters than ours. For all baseline models, we adopt the same training
strategy from original papers but train them on our dataset.
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(a) Obstacles: Square pillar, cylinder and cube (b) Fluid block and box

Figure 2: Visualizations of training settings

(a) Dam Collapse (b) Water Fall (c) Flow around Cylinder

Figure 3: Visualizations of initial condition settings in evaluation scenarios

Metrics To conduct quantitative analysis, we evaluate model performance based on several metrics.
We report the asymmetric version of Chamfer Distance between the simulated results of different
models and ground truth sequence. The asymmetric Chamfer distance for two collections of particles
X,Y (from X to Y ) is defined as:

L (X,Y ) =
1

N

∑
x∈X

min
y∈Y

d (x,y) , (29)

where N is the total particle number of point cloud collection X , and distance function d(x,y) is
evaluated using L2-norm ‖x−y‖2. We investigate two essential physical quantities for incompressible
fluid simulation - velocity divergence and particle density deviation of fluid field. In addition, we use
normalized mean absolute error (MAE) and relative tolerance to evaluate the error of advection net
and pressure net on single frame inference respectively. The normalized MAE from prediction ŷ to
ground truth y is defined as:

LMAE =
1

N

∑ |ŷ − y|
|y|

. (30)

The relative tolerance of the numerical solution x̂ to a linear system Ax = b can be defined as:

tol =
||Ax̂− b||2
||b||2

. (31)

Results We show the error trend of dam collapse and water fall scene under different evaluation
metrics in Figure 4. The quantitative analysis is reported at Table 3 The position error trend of
different time step sizes is shown in Figure 5. Qualitative results of pressure prediction are shown in
Figure 6.

In addition, we study the performance of each sub-network in our model as stand-alone solvers for
sub-dynamical systems and report their relative error in Table 4. For the advection net, we challenge
it by applying a different set of material parameters (i.e. different gravity and viscosity parameters).
We report the normalized mean absolute error (MAE) between prediction and ground truth.

L =
1

N

∑ |u̇pred − u̇gt|
||u̇gt||2

. (32)

For pressure net, we evaluate the relative tolerance of its predicted solution p̂ to the discretized
pressure poisson equation (i.e. Ap = b). The relative low error demonstrates the capability of our
sub-networks in learning and emulating different dynamical systems.

10



Published as a workshop paper at ICLR 2021 SimDL Workshop

Figure 4: Error trend with respect to time. The density deviation of our model remain close to zero
despite some oscillation at first. Although GNS also maintains a low density deviation, its average
density oscillates more severely. This is consistent with the qualitative comparison, in which the fluid
surface from GNS is oscillating and less compact. CConv fails to maintain constant density and its
density increases significantly after collision to the wall boundary. Both our model and GNS can
predict a low divergence velocity field while CConv fails to capture this property. This somehow
explains why CConv struggles to maintain constant density.The average Chamfer distance to the
ground truth data accumulates at first and stabilizes after system is in equilibrium. CConv has larger
average Chamfer distance while graph-based model’s distances are smaller.

Figure 5: Average Chamfer distance to the ground truth data of FGN model under different time
step sizes. FGN can generalized to different time scale with minor difference in performance. The
training data uses a time step size of dt = 0.002s, and FGN converges for all dt < 0.005s.
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Case Model Density error Velocity divergence
Average Chamfer

distance (mm)
Mean Max Mean Max Mean Max

Dam
Collapse

FGN (this work) 0.0461 0.0900 0.0195 0.0280 24.2 30.1
GNS 0.0898 0.3387 0.0210 0.0311 26.1 33.1
CConv 0.1811 0.2947 0.0338 0.1700 31.4 44.0
Ground Truth 0.0380 0.0710 0.0190 0.0268 - -

Water
Fall

FGN (this work) 0.0541 0.1350 0.0207 0.0431 24.8 29.6
GNS 0.1035 0.3512 0.0223 0.0399 25.6 31.8
CConv 0.2783 0.4121 0.0668 0.2882 40.4 61.5
Ground Truth 0.0429 0.0966 0.0196 0.0398 - -

Table 3: Quantitative accuracy analysis. For resolution, the dam collapse case contains about 10k
particles and water fall case contains about 80k particles. We report the mean and maximum value of
density error and velocity divergence over the whole simulation sequence. We also report the average
Chamfer distance between the results of each model and ground truth data.

Figure 6: Pressure distribution contour. Our model can learn to generate reasonable pressure
distribution. The distribution agreed with ground truth, which captures the shape of shifting high
pressure and low pressure region.

Model Dynamical system Model Output Evaluation metric Error
Advection Net u̇ = g + ν∇2u prediction of u̇ Normalized MAE 12.4%± 5.6%

Pressure Net ∇2p = 1
∆t∇ · u

∗ prediction of p Relative tolerance 8.3%± 1.1%

Table 4: Quantitative analysis of advection net and pressure net. We evaluate advection net’s
performance as solver for a forward problem. We generate ten sequences with different set of material
parameters as test data for advection net. The gravity g for test data ranges from 1.0 to 100.0 and
viscosity parameter ν ranges from 0.1 to 0.0001. For pressure net, we report its error as solver for a
linear equation system.
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Case Model Density error Velocity divergence
Average Chamfer

distance (mm)
Mean Max Mean Max Mean Max

Dam
Collapse

FGN (this work) 0.0461 0.0900 0.0195 0.0280 24.2 30.1
GCN 0.0939 0.3832 0.0196 0.0293 27.7 31.6
SAGE 0.0935 0.3597 0.0196 0.0289 26.4 31.3
MLP 0.0963 0.3624 0.0196 0.0289 28.5 32.8
Ground Truth 0.0380 0.0710 0.0190 0.0268 - -

Water
Fall

FGN (this work) 0.0541 0.1350 0.0207 0.0431 24.8 29.6
GCN 0.0794 0.3373 0.0210 0.0433 25.5 31.7
SAGE 0.0769 0.3254 0.0209 0.0432 25.3 31.4
MLP 0.0830 0.2967 0.0209 0.0433 26.3 32.4
Ground Truth 0.0429 0.0966 0.0196 0.0398 - -

Table 5: Quantitative ablation study. We compare our aggregator against graph convolution networks
(GCN) from Kipf and Welling (2016), Hamilton et al. (2017)’s graph SAGE using mean aggregator
and MLP w/o any graph aggregation operation. All aggregators have two layers.

A.4 ABLATION STUDY DETAILS

Performance of different message passing and aggregation mechanisms is listed in Table 5.

A.5 BASELINES IMPLEMENTATION

Continuous Convolution We use the open-source implementation from Ummenhofer et al. (2020)
2. To give a fair benchmark result we train their network with our dataset. Note our training dataset
is much smaller than theirs and does not include complex geometries. As in our work, we model
solid obstacles and wall as virtual particles, so we transform these virtual particles into surface and
corresponding normals before inputting them into CConv network. The original CConv uses a time
step size of 0.02s, but given such a large time step size, the qualitative results can be distinct from
ground truth and other model with smaller time step size. Hence during training and comparison we
adopt a time step size of 0.002s for CConv model.

Graph Network-based Simulator We implemented GNS following the description in Sanchez-
Gonzalez et al. (2020). We build GNS with 10 unshared GN blocks, conditioned on 5 previous
velocities and input relative positions as edge features. We chose the connectivity radius to be 2.1D,
so that the number of neighbors is around 20. Sanchez-Gonzalez et al. (2020) use finite-difference
to calculate acceleration and velocity, but in our implementation, we explicitly maintain an array
to store the velocities of all particles. Additionally, we do not use learned embedding but simple
zero and one to indicate particle material type, as in our testing domain there are only two kinds of
particles - solid and fluid. The loss function and training procedure are implemented as described in
Sanchez-Gonzalez et al. (2020), including noise injection and similar normalization techniques.

For the implementation of GN block, as Sanchez-Gonzalez et al. (2020) states "We use GNs without
global features or global updates (similar to an interaction network)", so we implement the GN block
update mechanism following the description in Battaglia et al. (2018).

e′k = φe(ek,vrk ,vsk ,u) (33)

v′i = φv(ê′k,vi,u) (34)

ê′i = ρe→v (E′i) (35)

where φ is the update function and implemented as MLP here, ρ is aggregation function which
aggregates all the edge attributes to its center vertex, u is the global feature and here we append them
to the nodal features as input feature, rk denotes receiver vertices and sk denotes sender vertices.

In the testing stage, as authors did not state how to set initial velocities, so we just warm start the
simulation by calculating the first 5 frames using MPS method and apply GNS to the rest frames.

2https://github.com/intel-isl/DeepLagrangianFluids
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