
Published as a workshop paper at ICLR 2021 SimDL Workshop

FINITE VOLUME NEURAL NETWORK: MODELING
SUBSURFACE CONTAMINANT TRANSPORT

Timothy Praditia ∗

University of Stuttgart
Matthias Karlbauer
University of Tübingen

Sebastian Otte
University of Tübingen

Sergey Oladyshkin
University of Stuttgart

Martin V. Butz
University of Tübingen

Wolfgang Nowak
University of Stuttgart

ABSTRACT

Data-driven modeling of spatiotemporal physical processes with general deep
learning methods is a highly challenging task. It is further exacerbated by the lim-
ited availability of data, leading to poor generalizations in standard neural network
models. To tackle this issue, we introduce a new approach called the Finite Vol-
ume Neural Network (FINN). The FINN method adopts the numerical structure of
the well-known Finite Volume Method for handling partial differential equations,
so that each quantity of interest follows its own adaptable conservation law, while
it concurrently accommodates learnable parameters. As a result, FINN enables
better handling of fluxes between control volumes and therefore proper treatment
of different types of numerical boundary conditions. We demonstrate the effec-
tiveness of our approach with a subsurface contaminant transport problem, which
is governed by a non-linear diffusion-sorption process. FINN does not only gener-
alize better to differing boundary conditions compared to other methods, it is also
capable to explicitly extract and learn the constitutive relationships (expressed by
the retardation factor). More importantly, FINN shows excellent generalization
ability when applied to both synthetic datasets and real, sparse experimental data,
thus underlining its relevance as a data-driven modeling tool.

1 INTRODUCTION

Training neural networks augmented with additional physical information has been shown to im-
prove their generalization capabilities, particularly when predicting physical processes. In the
Physics Informed Neural Network (PINN) framework (Karpatne et al., 2017; 2018; Tartakovsky
et al., 2018; Raissi et al., 2019; Wang et al., 2020), the neural network prediction u(x, t) is defined
to be an explicit function of space x and time t. Furthermore, calculations of respective derivatives,
such as ∂u

∂x and ∂u
∂t , are required for formulating the loss function. However, when the available

training data is concentrated on a single location x or time t, the approximation of the derivatives
∂u
∂x and ∂u

∂t in current techniques deteriorates due to (a) insufficient information provided by the data
and (b) the lack of structural explainability of the framework itself. To address these issues from a
structural point of view, several works have been conducted in the literature recently. One architec-
ture, namely the Distributed Spatiotemporal Artificial Neural Network (DISTANA, Karlbauer et al.,
2019), uses translational invariant Prediction Kernels (PKs) and Transition Kernels (TKs) to process
the temporal and spatial correlation of the data, respectively. Another method, called the Univer-
sal Differential Equation method (UDE, Rackauckas et al., 2020), combines Convolutional Neural
Networks (CNNs, LeCun et al., 1999) with Neural Ordinary Differential Equations (NODEs, Chen
et al., 2018), for learning spatiotemporal data. Despite promising results shown by these methods,
they still suffer from unreliable flux handling (i.e. the physical fluxes are not guaranteed to be con-
servative). Consequently, the methods mentioned above lack means to properly treat different types
of boundary conditions.

To handle fluxes more robustly and improve generalization within a physical domain, we propose
a Finite Volume Neural Network (FINN). The FINN method is a hybrid model, which capitalizes

∗Corresponding author: timothy.praditia@iws.uni-stuttgart.de

1



Published as a workshop paper at ICLR 2021 SimDL Workshop

on the structural knowledge of the well-known Finite Volume Method (FVM, Moukalled et al.,
2016), and the flexibility as well as the learning abilities of Artificial Neural Networks (ANNs),
more specifically NODEs. As a consequence, the FINN structure can properly treat different types
of boundary conditions and ensures conservation of the quantities of interest. Moreover, we show
that FINN is able to reconstruct the full field solution (for all x and t) even when trained with only
partial information (e.g. at a single point x or t). Additionally, the structure of FINN facilitates
learning and extracting constitutive relationships and/or reaction terms, and, consequently, shows
exceptional generalization capabilities and develops explainable knowledge structures.

2 METHODS

In this work, we focus on modeling spatiotemporal physical processes, namely processes that scien-
tists try to model with Partial Differential Equations (PDEs), such as diffusion-type problems. They
can be generally written mathematically as follows:

∂u

∂t
=

∂

∂x

(
D(u)

∂u

∂x

)
+ q(u), (1)

where u is the quantity of interest, t is time, D is the diffusion coefficient and q is the source/sink
term. Usually, the FVM discretizes Equation 1 implicitly in space and explicitly in time, leading to
a simplified definition:

∂u
(t+1)
i

∂t
= f

(
u
(t)
i−1, u

(t)
i , u

(t)
i+1, t

)
, (2)

where u(t)i denotes u at control volume i and time step t. In other words, the time derivative of u
depends on the current value of u, the values of u at the neighboring control volumes, and time. For
brevity, we drop the time index in later definitions.

In FINN, we introduce Flux Kernels F , which take the input of ui−1, ui, and ui+1 to approximate
the divergence part (first term on the right hand side) in Equation 1 for each control volume i:

Fi = Φθ(ui−1, ui, ui+1) =
∑
s

fks ≈
∮
S

(
D(u)

∂u

∂x
· n̂
)
ds. (3)

The Flux Kernels Fi consist of subkernels fks that calculate fluxes at the boundary surfaces s
between control volume i and its neighboring control volumes (see Figure 1), being learned by N
and D, which are subcomponents of the function Φ with parameters θ. The function N in each fks
is equivalent to a linear layer that takes ui and one of its neighbors (i.e. ui−1 or ui+1) as inputs and
learns the numerical FVM stencil with its weights that should amount to [−1, 1], which corresponds
to [ui, ui−1] and [ui, ui+1] (i.e. simple difference between neighboring control volumes) in ideal
one-dimensional diffusion problems. If the diffusion coefficient D depends on u according to a

Si

Fi
fks−

fks+

u
(t)
i

u
(t)
i−1

u
(t)
i+1

N

D

×

N

D

×

+

Φψ

+ ∂u
(t+1)
i
∂t

ODE solver u
(t+1)
i

Figure 1: Illustration of the Flux and State Kernels in the FINN.

2



Published as a workshop paper at ICLR 2021 SimDL Workshop

hidden constitutive relationship, the function D in each fks learns and approximates this function
D(u) ≈ D(u). Otherwise, D will be only a scalar value D ≡ D, which can also be set as a
learnable parameter. Next, the output of N is multiplied with the output of D to obtain the flux
approximation at each boundary. When the fluxes at all boundary surfaces s are integrated in each
control volume i, the summation of the numerical stencil will lead to the classical one-dimensional
numerical Laplacian with [1,−2, 1] corresponding to [ui−1, ui, ui+1] if Equation 1 is true.

This structure of the Flux Kernel enables straightforward handling of different types of boundary
conditions. With a Dirichlet boundary condition u = ub, we can set either ui−1 = ub or ui+1 = ub
at the corresponding domain boundary. With a Neumann boundary condition ν, we can easily set
the output of fks at the corresponding domain boundary s to be equal to ν. With a Cauchy boundary
condition, we can calculate the derivative approximation at the corresponding domain boundary and
set it as either ui−1 or ui+1.

The State Kernels S then take the output of the Flux Kernels and approximate ∂u
∂t while also learning

the source/sink term q ≈ Φψ(u) as a function of u (whenever necessary), which is also learnable
by the State Kernels. Formally, each State Kernel can be written as an approximation of the time
derivative in Equation 1 for each control volume i:

Si = Fi + Φψ(u) ≈ ∂ui
∂t

, (4)

where Φ is parameterized by ψ. The outputs of State Kernels are then integrated by an ODE solver
to solve for u(t+1), which will be used recursively for calculation of the subsequent time steps. The
benefits of using an ODE solver are twofold: (a) it allows for adaptive time stepping, which in turn
leads to better numerical stability in explicit schemes, and (b) it enables handling of unevenly spaced
time series, which is very common in real observation data.

One of the benefits of State Kernels is to enable separate calculations for different quantities of
interest, while the divergence (flux) can be calculated based on the same variable. This ensures that
each quantity of interest follows its own conservation law. In short, FINN consists of Flux Kernels
that handle the spatial correlation, and State Kernels that handle the temporal correlation of the data.

3 EXPERIMENT

For demonstration purposes, we choose an application with a subsurface contaminant transport prob-
lem. We assess the performance of FINN not only using synthetic simulation data, but also real
experimental data. The contaminant transport is characterized by the non-linear diffusion-sorption
equation in a fluid-filled homogeneous porous medium:

R
∂c

∂t
= De

∂2c

∂x2
, (5)

where c denotes the concentration of trichloroethylene (TCE) dissolved in the fluid, De denotes
the effective TCE diffusion coefficient, and R denotes the retardation factor (representing sorption),
which is a function of c. Equation 5 is subject to a Dirichlet boundary condition at x = 0 and
a Cauchy boundary condition at x = L (i.e. the top and bottom ends of the field) and an initial
condition c(t = 0) = 0. Using the definition of retardation factors, we can also calculate the total
TCE concentration ct (both in the fluid and adsorbed in the solid)

∂ct
∂t

= Deφ
∂2c

∂x2
, (6)

where φ is the porosity of the medium (i.e. the core samples). More detailed information on the
experiment and its numerical simulation can be found elsewhere (Nowak & Guthke, 2016).

4 RESULTS AND DISCUSSION

As the first step, we train and test FINN using numerically generated synthetic datasets. Both train
and test datasets are discretized into 26 control volumes and 2 000 time steps. We train FINN using
the whole spatial domain, with time steps 0−500 (i.e. t = 0−2 500 days) of the train dataset. Here,

3



Published as a workshop paper at ICLR 2021 SimDL Workshop

Table 1: Comparison of MSE values between different deep learning architectures.

Method Training Extrapolated training Test unseen Parameters

TCN (7.9 ± 5.4) × 10−6 (5.9 ± 4.1) × 10−3 (3.0 ± 1.2) × 10−2 1 386
ConvLSTM (5.5 ± 1.6) × 10−6 (4.9 ± 5.7) × 10−2 (6.6 ± 7.9) × 10−2 1 496
DISTANA (1.9 ± 1.1) × 10−6 (1.0 ± 2.9) × 10−2 (1.6 ± 4.0) × 10−2 1 350
FINN (4.7 ± 4.9) × 10−5 (1.1 ± 1.2) × 10−4 (4.1 ± 4.0) × 10−5 528

FINN receives only the initial condition, i.e. initial values of c(0) and c(0)t , along with the Dirichlet
boundary condition value at the top boundary. The bottom boundary is subject to a Cauchy boundary
condition, and therefore is solution dependent. FINN is then trained in a closed loop system, using
predicted values of c and ct at time step t as input for the calculation at time step t+ 1.

For this synthetic data application, we setN and D to be learnable. Additionally, for the calculation
of c, we set D to be a feedforward neural network that approximates De/R in Equation 5, allow-
ing us to extract information about the learned retardation factor as a function of the contaminant
concentration R(c). This neural network is constructed with 3 hidden layers, each containing 15
hidden nodes. Each hidden layer uses hyperbolic tangent as the activation function, and the output
layer uses the sigmoid activation function, multiplied with a learnable scaling factor to ensure that
the approximation of De/R is strictly positive.

To test the generalization capability, we use the trained network to extrapolate until time step 2 000
(t = 10 000 days). Additionally, we test the trained FINN prediction against a completely unseen
test dataset obtained at different boundary conditions. The Dirichlet boundary condition values at
the top boundary cs are 1.0 kg/m3 and 0.7 kg/m3 for the train and test dataset, respectively. We also
compare the train and test Mean Squared Error (MSE) value with other known methods, such as
TCN (Kalchbrenner et al., 2016), ConvLSTM (Shi et al., 2015), and DISTANA (Karlbauer et al.,
2019).

The comparison in Table 1 shows that FINN appropriately generalizes when tested against a different
boundary condition. Even though all methods have comparable performance during training, the

Figure 2: Breakthrough curve prediction of the FINN method (blue line) during training using data
from core sample #2 (top left), during testing using data from core sample #1 (top right) and total
concentration profile prediction using data from core sample #2B (bottom left). The predictions are
compared with the experimental data (red circles) and the results obtained using the physical model
(orange dashed line). The extracted retardation factor as a function of c is shown on the bottom right

4



Published as a workshop paper at ICLR 2021 SimDL Workshop

predictions of TCN, ConvLSTM, and DISTANA deteriorate when the knowledge gained from the
training data needs to be extrapolated and to predict unseen test data. This appears to be caused by
the fact that they lack proper boundary condition handling. More detailed information can be found
in the appendices regarding the benchmark test dataset (Appendix A), the training and test results
(Appendix B), as well as the model setup (Appendix C).

As the second step, we apply FINN to real experimental data. The experimental data were collected
from three different core samples, namely core samples #1, #2, and #2B (see Appendix D). In this
setup, we train FINN using data that originate exclusively from core sample #2. For this experi-
mental data application, FINN is set up the same way as the synthetic data setup. For the dissolved
concentration calculation, we also set D to be a feedforward neural network that takes c as the input
to learn the retardation factor function. However, we assume that we know the diffusion coefficient
values for all core samples. The main setup difference lies in the available data used to train FINN.
More specifically, we only use the breakthrough curve data of c in the tailwater. This means that the
data provides partial information and constrains the FINN prediction only at x = L|0≤t≤tend

.

The results show that the trained FINN has higher accuracy with MSE = 4.84× 10−4 compared to
the calibrated (least squares) numerical PDE model with MSE = 1.06× 10−3. Further, we test and
validate the trained model using different core samples (i.e. #1 and #2B), which originate from the
same geographical area and therefore can be assumed to have similar soil parameters. In Figure 2, we
show that the predictions match the experimental data with reasonable accuracy. We also compare
the predictions with the output of the numerical model, with the retardation factor also calibrated
using the data from the same core sample #2. The plots show that FINN’s prediction accuracy is
comparable to the numerical model, even beating it in some instances. For core sample #1, the MSE
of FINN prediction is 1.37× 10−3, while the numerical model underestimates the breakthrough
curve with MSE = 2.50× 10−3.

Specifically for core sample #2B, which is significantly longer than the other samples, to model the
diffusion-sorption process, we can assume a zero-flux Neumann boundary condition at the bottom
of the core. As a consequence, there are no breakthrough curve data available anymore. Instead,
we compare the prediction against the total concentration profile data obtained from a destructive
sampling (i.e. core slicing) at the end of the experiment. Here, FINN produces predictions with
MSE = 1.16× 10−3, while the numerical model overestimates the total concentration profile with
MSE = 2.73× 10−3. The results show that, even when applied to a different type of boundary
condition, FINN’s predictions remain accurate. Moreover, we can extract the retardation factor as a
function of c using FINN, which is plotted in Figure 2, thus explaining a soil property.

5 CONCLUSION AND FUTURE WORK

We have shown that including physical knowledge in the form of the Finite Volume structure pro-
duces excellent generalization capabilities and improves the explainability of the applied neural
network structure. Our novel Finite Volume Neural Network (FINN) permits proper calculations for
conservative fluxes and for different types of boundary condition. FINN outperforms other neural
network methods for spatiotemporal modeling such as Temporal Convolutional Network, Convolu-
tional LSTM, and DISTANA, especially when tested with different boundary conditions. Moreover,
we show that FINN is suitable for experimental data processing, rendering it relevant as a data-driven
modeling tool.

In this work, we assumed spatial homogeneity for the soil in the simulation domain due to the small
size of the actual experimental domain. For real field applications, where the scale is significantly
larger, the homogeneity assumption might not hold. We are interested in enhancing FINN to handle
spatially heterogeneous parameters. One way to achieve this is by defining a spatially correlated
parameter to model a learnable diffusion coefficient in a spatially heterogeneous system akin to
Karlbauer et al. (2020). Additionally, we are also interested in quantifying uncertainties of our model
by implementing a Bayesian Neural Network. A concrete application example in the contaminant
transport modeling domain is to produce confidence intervals for both the concentration function and
the learned retardation factor function. Overall, recent development in fusing numerical methods
with deep learning to aid physical processes simulation shows promising results to keep continuing
the trend in this direction. It is very exciting to see how far we can push the boundaries between
numerical methods and deep learning and to see the benefit when combining both approaches.

5



Published as a workshop paper at ICLR 2021 SimDL Workshop

ACKNOWLEDGMENTS

This work is funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy - EXC 2075 – 390740016 as well as EXC 2064 – 390727645.
We acknowledge the support by the Stuttgart Center for Simulation Science (SimTech). Moreover,
we thank the International Max Planck Research School for Intelligent Systems (IMPRS-IS) for
supporting Matthias Karlbauer. Codes and data that are used for this paper can be found in the
repository https://github.com/timothypraditia/finn.

REFERENCES

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in Neural Information Processing Systems, volume 31, 2018.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex Graves, and Koray
Kavukcuoglu. Neural machine translation in linear time. arXiv preprint, 2016. URL https:
//arxiv.org/abs/1610.10099.

Matthias Karlbauer, Sebastian Otte, Hendrik P. A. Lensch, Thomas Scholten, Volker Wulfmeyer, and
Martin V. Butz. A distributed neural network architecture for robust non-linear spatio-temporal
prediction. arXiv preprint, 2019. URL https://arxiv.org/abs/1912.11141.

Matthias Karlbauer, Tobias Menge, Sebastian Otte, Hendrik P. A. Lensch, Thomas Scholten, Volker
Wulfmeyer, and Martin V. Butz. Hidden latent state inference in a spatio-temporal generative
model, 2020.

A. Karpatne, G. Atluri, J.H. Faghmous, M. Steinbach, A. Banerjee, A.R. Ganguly, S. Shekhar, N.F.
Samatova, and V. Kumar. Theory-guided Data Science: A New Paradigm for Scientific Discovery
from Data. arXiv preprint, 2017. URL http://arxiv.org/abs/1612.08544v2.

A. Karpatne, W. Watkins, J. Read, and V. Kumar. Physics-guided Neural Networks (PGNN): An
Application in Lake Temperature Modeling. arXiv preprint, 2018. URL http://arxiv.org/
abs/1710.11431v2.

Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Object recognition with gradient-
based learning, pp. 319–345. Springer, 1999. ISBN 978-3-540-46805-9. doi: 10.1007/
3-540-46805-6 19.

F. Moukalled, L. Mangani, and M. Darwish. The Finite Volume Method in Computational Fluid
Dynamics. Springer, 1 edition, 2016. ISBN 9783319168746. doi: 10.1007/978-3-319-16874-6.

W. Nowak and A. Guthke. Entropy-based experimental design for optimal model discrimination in
the geosciences. Entropy, 18(11), 2016. doi: 10.3390/e18110409.

Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit Su-
pekar, Dominic Skinner, Ali Ramadhan, and Alan Edelman. Universal differential equations for
scientific machine learning. arXiv preprint, 2020. URL https://arxiv.org/abs/2001.
04385.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equa-
tions. Journal of Computational Physics, 378:686–707, 2019. doi: 10.1016/j.jcp.2018.10.045.

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo.
Convolutional lstm network: A machine learning approach for precipitation nowcasting. arXiv
preprint, 2015. URL https://arxiv.org/abs/1506.04214.

A.M. Tartakovsky, C.O. Marrero, P. Perdikaris, G.D. Tartakovsky, and D. Barajas-Solano. Learning
Parameters and Constitutive Relationships with Physics Informed Deep Neural Networks. arXiv
preprint, 2018. URL https://arxiv.org/abs/1808.03398.

Nanzhe Wang, Dongxiao Zhang, Haibin Chang, and Heng Li. Deep learning of subsurface flow via
theory-guided neural network. Journal of Hydrology, 584:124700, 2020. doi: 10.1016/j.jhydrol.
2020.124700.

6

https://github.com/timothypraditia/finn
https://arxiv.org/abs/1610.10099
https://arxiv.org/abs/1610.10099
https://arxiv.org/abs/1912.11141
http://arxiv.org/abs/1612.08544v2
http://arxiv.org/abs/1710.11431v2
http://arxiv.org/abs/1710.11431v2
https://arxiv.org/abs/2001.04385
https://arxiv.org/abs/2001.04385
https://arxiv.org/abs/1506.04214
https://arxiv.org/abs/1808.03398


Published as a workshop paper at ICLR 2021 SimDL Workshop

A SOIL PARAMETERS AND SIMULATION DOMAINS FOR THE BENCHMARK
TEST

In this appendix, we present the soil parameters and the simulation domains used to generate the
numerical benchmark dataset. Table 2 summarizes the parameters used to generate the training
and test dataset. The retardation factor function is generated with the Freundlich sorption isotherm,
written mathematically as

R = 1 +
1− φ
φ

ρsKfnfc
nf−1. (7)

Table 2: Soil parameters and simulation domains for training and testing dataset generation.

Soil parameters Simulation domain

Parameter Unit Value Parameter Unit Value

De m2/day 5 × 10−4 L m 1.0
φ - 0.29 ∆x m 0.04
ρs kg/m3 2880 tend days 104

Kf (m3/kg)nf 3.53 × 10−4 ∆t days 5
nf - 0.874

Here, De is the effective diffusion coefficient, φ is the porosity, ρs is the bulk density, Kf is the
Freundlich K coefficient, nf is the Freundlich exponent, L is the length of the sample, ∆x is the
discrete control volume size, tend is the simulation time, and ∆t is the numerical time step.

For the training dataset, the upper boundary condition (x = 0) is set to be a Dirichlet boundary
condition, with the maximum solubility of TCE cs = 1.0 kg/m3. The testing dataset is generated
with the same soil parameters and simulation domain, but with upper boundary condition cs = 0.7
kg/m3. The lower boundary condition (x = L) is set to be a Cauchy boundary condition according
to De

Q
∂c
∂x |x=L, whereQ is the flow rate in the bottom reservoir. In the benchmark dataset, we assume

that Q = 1.0. Details on geometries, boundary conditions, and simulation can be found in (Nowak
& Guthke, 2016).

B BENCHMARK TEST RESULTS

In this appendix, we present the results and compare different methods for the benchmark test results.
For each method, we train 10 models with different initialization. The MSE values of the predictions
are then calculated compared with the training dataset at time steps 0−500 (i.e. t = 0−2 500 days),
the extrapolated training dataset at time steps 500 − 2 000 (i.e. t = 2 500 − 10 000 days), and the
whole unseen test dataset (at all time steps 0 − 2 000). We train the models with noisy data. The
noise is normally distributed with standard deviation σ = 1 × 10−5, i.e. N ∼ (0.0, 1 × 10−5).
Detailed information of the test MSE for every individual model is shown in Table 3 for seen data
and in Table 4 for unseed data.

The prediction mean and confidence interval are plotted in Figure 3, Figure 4, Figure 5, and Figure 6.
Confidence intervals are obtained from repeated (ten times) training with random initialization. Even
though the prediction mean of each method is not far from the synthetic data, clear instabilities and
inconsistencies can be seen from the wide range of confidence intervals in the TCN, ConvLSTM,
and DISTANA predictions. This instability is mainly caused by the improper handling of boundary
conditions by these methods. FINN, on the other hand, produces very precise prediction along with
high accuracy.

C MODEL DETAILS OF TCN, CONVLSTM AND DISTANA

In this appendix, we provide additional information about the TCN, ConvLSTM and DISTANA
models: bias neurons were used in all layers of all architectures and ADAM was used for optimiza-
tion with a learning rate of η = 1× 10−3. As fair comparison, FINN results for the benchmark test

7



Published as a workshop paper at ICLR 2021 SimDL Workshop

Table 3: Test MSE on seen data (extrapolated training) from ten different training runs for each
model

Run TCN ConvLSTM DISTANA FINN

1 5.2× 10−3 2.1× 10−3 6.3× 10−5 2.7× 10−4

2 4.9× 10−3 3.4× 10−3 3.6× 10−4 3.0× 10−5

3 4.1× 10−3 8.3× 10−2 9.7× 10−2 2.7× 10−4

4 4.1× 10−3 1.5× 10−1 4.0× 10−4 9.0× 10−5

5 8.1× 10−4 4.4× 10−3 4.2× 10−5 8.6× 10−6

6 1.2× 10−2 8.3× 10−3 4.5× 10−4 4.1× 10−5

7 1.5× 10−2 2.4× 10−3 8.2× 10−5 3.2× 10−5

8 4.5× 10−3 5.0× 10−3 9.5× 10−4 2.8× 10−4

9 2.6× 10−3 1.0× 10−1 5.2× 10−5 2.4× 10−5

10 5.6× 10−3 1.3× 10−1 1.8× 10−4 3.5× 10−5

Table 4: Test MSE on unseen data coming from ten different training runs for each model

Run TCN ConvLSTM DISTANA FINN

1 3.8× 10−2 1.1× 10−2 1.5× 10−3 9.7× 10−5

2 3.3× 10−2 1.1× 10−3 8.9× 10−4 1.5× 10−5

3 3.0× 10−2 1.0× 10−1 1.4× 10−1 9.5× 10−5

4 2.7× 10−2 1.2× 10−1 8.6× 10−3 3.4× 10−5

5 2.5× 10−2 7.0× 10−3 7.0× 10−5 4.9× 10−6

6 5.1× 10−2 5.6× 10−4 3.6× 10−3 1.9× 10−5

7 2.9× 10−2 2.6× 10−2 3.0× 10−4 1.5× 10−5

8 3.9× 10−3 3.1× 10−4 8.6× 10−3 1.0× 10−4

9 2.3× 10−2 1.9× 10−1 3.4× 10−3 1.2× 10−5

10 4.3× 10−2 2.2× 10−1 3.7× 10−4 1.6× 10−5

Figure 3: Dissolved concentration profile prediction mean (with confidence interval) at t = 5 000
days compared with the extrapolated training dataset obtained using TCN (top left), ConvLSTM
(top right), DISTANA (bottom left), and FINN (bottom right).

8



Published as a workshop paper at ICLR 2021 SimDL Workshop

Figure 4: Total concentration profile prediction mean (with confidence interval) at t = 5 000 days
compared with the extrapolated training dataset obtained using TCN (top left), ConvLSTM (top
right), DISTANA (bottom left), and FINN (bottom right).

Figure 5: Dissolved concentration profile prediction mean (with confidence interval) at t = 5 000
days compared with the test dataset obtained using TCN (top left), ConvLSTM (top right), DIS-
TANA (bottom left), and FINN (bottom right).

case are obtained also using the ADAM optimizer with the same learning rate. While TCN, Con-
vLSTM and DISTANA are always provided with the real data in the first ten timesteps (i.e. teacher
forcing), FINN only receives an initial condition in the first timestep along with the information
about the boundary in all timesteps. For better comparison, we also provide boundary condition
information for TCN, ConvLSTM, and DISTANA. Note that in this experiment, TCN, ConvLSTM
and DISTANA are provided with more information than FINN, which nevertheless outperforms the
other models.

9



Published as a workshop paper at ICLR 2021 SimDL Workshop

Figure 6: Total concentration profile prediction mean (with confidence interval) at t = 5 000 days
compared with the test dataset obtained using TCN (top left), ConvLSTM (top right), DISTANA
(bottom left), and FINN (bottom right).

TCN Two input channels are followed by two hidden layers with four and eight channels, respec-
tively, which are processed by two output channels. A convolution kernel size of k = 3 was chosen
and the standard dilation rate of TCN was applied (d = l2, where l is the index of the layer), leading
to a time horizon of 28 time steps. Code was taken and modified from 1.

ConvLSTM Two input feature maps, followed by ten channels in one hidden layer and two output
channels, were used. The convolution kernel size was set to k = 3 and zero-padding was applied to
preserve data dimensions. PyTorch code was taken from 2 and adapted to be applicable to spatially
one-dimensional data.

DISTANA Two input channels map to four preprocessing convolution channels, which feed for-
ward into a ConvLSTM layer with eight channels which are processed by two postprocessing con-
volution channels. The lateral information processing convolution layer was set to two channels.

D SOIL PARAMETERS AND SIMULATION DOMAINS FOR THE EXPERIMENT

In this appendix, we present the soil parameters and the simulation domains of the core samples
used in the experiment. Table 5 summarizes the parameters of core sample #1, #2, and #2B.

For all experiments, the core samples are subjected to a constant TCE concentration at the top cs,
which amounts to a Dirichlet boundary condition. Notice that, for core sample #2, we set cs to be
slightly higher to compensate for the fact that there might be fractures at the top of core sample #2,
so that the TCE can break through the core sample faster.

For core samples #1 and #2, Q is the flow rate of clean water at the bottom reservoir that determines
the Cauchy boundary condition at the bottom of the core samples. For core sample #2B, note that the
sample length is significantly longer than the other samples. Therefore, for this particular sample,
given tend to be approximately in the same order with the other samples, we assume the bottom
boundary condition to be a no-flow Neumann boundary condition.

1https://github.com/locuslab/TCN
2https://github.com/ndrplz/ConvLSTM_pytorch

10

https://github.com/locuslab/TCN
https://github.com/ndrplz/ConvLSTM_pytorch


Published as a workshop paper at ICLR 2021 SimDL Workshop

Table 5: Soil and experimental parameters of core samples #1, #2, and #2B.

Soil parameters

Parameter Unit Core #1 Core #2 Core #2B

De m2/day 2.00 × 10−5 2.00 × 10−5 2.78 × 10−5

φ - 0.288 0.288 0.288
ρs kg/m3 1957 1957 1957

Simulation domain

Parameter Unit Core #1 Core #2 Core #2B

L m 0.0254 0.02604 0.105
r m 0.02375 0.02375 N/A
tend days 38.81 39.82 48.88
Q m3/day 1.01 × 10−4 1.04 × 10−4 N/A
cs kg/m3 1.4 1.6 1.4

11


	Introduction
	Methods
	Experiment
	Results and Discussion
	Conclusion and Future Work
	Soil Parameters and Simulation Domains for the Benchmark Test
	Benchmark Test Results
	Model Details of TCN, ConvLSTM and DISTANA
	Soil Parameters and Simulation Domains for the Experiment

