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ABSTRACT

Simulations in fundamental physics connect underlying first-principle theories
and empirical descriptions of detectors with experimentally observed data. They
are indispensable, e.g., in particle physics, where they underpin statistical infer-
ence tasks and experiment design. However, these Monte-Carlo-based simulations
are computationally costly. Growing data volumes produced by upcoming experi-
ments exacerbate this problem and need to be matched by a commensurate growth
in simulated statistics for precision measurements. Generative machine learning
models offer a potential way to leverage the effectiveness of classical simulation
via amplification. This contribution presents state-of-the-art performance for sim-
ulating the interaction of two different types of elementary particles with different
characteristics — photons and pions — with high granularity detectors of 27k and
8k read-out channels, respectively.

1 INTRODUCTION

Fundamental physics probes the physical laws of Nature at length scales of 10−18 meters by inves-
tigating the interactions of high-energy particles at collider experiments. There, beams of particles
(e.g. protons or electrons) close to the speed of light are brought into collision. These interactions
produce sprays of secondary particles that are eventually measured in complex and highly-granular
detectors. Investigating the statistical distributions of these decay products, for example, allowed
the discovery of the Higgs boson particle in 2012 (CMS Collaboration, 2012; ATLAS Collabora-
tion, 2012).

Detailed simulations of the occurring processes are essential to carry out this research. Monte
Carlo methods are traditionally used to describe the interaction probabilities due to the quantum-
mechanical, statistical theories and empirical models of the particle interactions with detectors.
These simulations enable precise measurements of fundamental constants, the construction of hy-
pothesis tests for discovering new particles and interaction laws, and the design and further improve-
ment of detectors.

To be statistically viable, the number of simulated collision events should approximate the number of
recorded events, leading to the required simulation of billions of examples; further growth is needed
due to improvements in the collider and future experiments. Given a simulation time of seconds-to-
minutes per event, this constitutes a significant expenditure of resources and a substantial bottleneck
for this avenue of fundamental research.
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Table 1: Parameter summary of the two data sets used.

Photon / ECal Pion / AHCal

Material (Active/Passive) Silicon / Tungsten Polystyrene / Steel
Sensor size 5× 5 mm2 30× 30× 3 mm3

Data dimensions (pixels) 30× 30× 30 13× 13× 48
Training sample size 950k showers 500k showers

A promising approach lies in using generative machine learning models to amplify the available
statistics(Butter et al., 2020; Paganini et al., 2018a). Methods using Generative Adversarial Network
(GANs) (Goodfellow et al., 2014), Variational Autoencoders (VAE) (Kingma & Welling, 2014), and
autoregressive flows Huang et al. (2018) have been investigated for different aspects of this challenge
such as event generation (Di Sipio et al., 2019; Otten et al., 2019; Butter et al., 2019; Alanazi et al.,
2020), parton showering (Bothmann & Debbio, 2019; de Oliveira et al., 2017; Monk, 2018) and
detector simulation (Paganini et al., 2018b; Erdmann et al., 2018; 2019; ATLAS Collaboration,
2018; 2019; Ghosh, 2019; Belayneh et al., 2019; Buhmann et al., 2021).

This contribution shows progress on a particular simulation challenge: particle showers in highly-
granular detectors. We investigate two types of particles with different decay characteristics and
present state-of-the-art methods for their generation, including a detailed statistical analysis of the
obtained differential distributions of relevant features. The remainder of this work is structured as
follows: Sec. 2 introduces the physics challenges and training datasets; Sec. 3 discusses the used
generative architectures; Sec. 4 presents the obtained results; and Sec. 5 summarises our findings
and shows an outlook on future work.

2 DATA SETS

We simulate the resulting chains of particle emissions, so-called showers, obtained by shooting two
different species of primary particles — photons and pions — into a detector block. A realistic
simulation will need to be conditioned on the particle type, but we treat photon and pion showers
as two separate problems for development purposes. We selected these two species as they offer
distinct difficulties in their simulation: photon showers are more compact and comparatively easier
to simulate, while due to a mixture of electromagnetic and nuclear interactions present in their
showers, pions exhibit a significantly larger topological variety. These interactions are illustrated in
Fig.1.

Simulating the planned International Linear Detector (ILD) (Abramowicz et al., 2020) prototype was
chosen as a target as this detector design, due to high granularity and high expected particle rates,
offers a particularly compelling simulation challenge. Different sub-detectors are especially sensi-
tive to different particle types. For photons this is the electromagnetic calorimeter (ECal) while for
pions the Analogue Hadron Calorimeter (AHCal) is particularly relevant. We, therefore, simulate
photon interactions with the ECal and pion interactions with the AHCal subdetectors, respectively.
Modern calorimeter detectors are constructed in a sandwich structure consisting of dense passive
material layers that initiate showers and active sensor materials measuring the interaction. Details
on both data sets are provided in Table 1. For both particle types, the primary particle energies are
sampled uniformly between 10 and 100 GeV, to provide a realistic variety. The initial simulation is
carried out using the GEANT4 (Agostinelli et al., 2003) software package. Artifacts from projecting
the physical geometry to a fixed grid are corrected such that every pixel corresponds to precisely one
sensor.

3 GENERATIVE MODELS

We train and evaluate three generative models in this study: GANs, GANs optimizing a Wasser-
stein loss, and Bounded Information Bottleneck Autoencoders (BIB-AEs). All are implemented in
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Figure 1: Projections of one photon shower (left) and three pion showers (right), indicating the large
diversity among pion shower shapes. Note also the different shape of the 30× 30× 30 photon and
48× 13× 13 pion data.

PYTORCH (Paszke et al., 2019) using convolutional and transpose-convolutional operations. Addi-
tional details of the network architectures are provided in Ref. Buhmann et al. (2021).

GANs (Goodfellow et al., 2014) were first proposed for simulating showers in particle physics in
Ref. Paganini et al. (2018a). To obtain realistic showers, we parametrize the generator and discrim-
inator on the primary particle energy E (Baldi et al., 2016). We use minibatch discrimination (Sal-
imans et al., 2016) following Karras et al. (2017) to reduce mode collapse, increase the variety of
generated showers, and obtain better stability in the training process for the GAN model.

Using the Wasserstein distance (Cédric, 2009) — e.g. approximated following the Kantorovich-
Rubinstein duality via a critic (Gulrajani et al., 2017) network — as loss can improve the stability of
generative model training. Following Erdmann et al. (2019), we condition the generator and critic
network on the primary particle energy and use an additional constrained network to improve fidelity.
For simulating pion showers, the WGAN model training is improved via Latent Optimization (Wu
et al., 2019; 2020).

The BIB-AE (Voloshynovskiy et al., 2019) unifies features of GANs and autoencoders. A pair of
Wasserstein-GAN-like critics evaluate the quality of reconstructed images: one judges the realism
of the reconstructed outputs, and one compares the output and input image, ensuring that they look
alike. Latent regularisation is improved by an additional critic and an MMD term (Gretton et al.,
2008). An additional Post-Processor network, trained in a second step, is used to improve per-pixel
energies. BIB-AE training is further improved by minibatch-discrimination during training.

4 RESULTS

For simulations in particle physics, a visual comparison of individual images is less revealing than
a statistical analysis of the obtained distributions. In Fig. 2, we show examples of three relevant
observables: the energy contained in a single sensor (visible cell energy, left), the total energy sum
over all pixels in a shower (center), and the number of non-zero pixels (right). The top row shows
photon showers, while pions are presented in the bottom row. In all cases, we compare the ground
truth (GEANT4) to the learned models.

Due to electronic noise, only single-cell energies above half the energy deposited by a minimally
ionizing particle (MIP) are physically relevant. This energy is different for ECal and AHCal detec-
tors and provided as top scale. The greyed-out region in the left panels represents this threshold. All
models describe high energies above 5 MIP well. The BIB-AE with Post Processor network also
correctly learns the structure around 1 MIP. The total energy is similarly well described by all mod-
els and in general is better modeled for pion showers. The WGAN model has difficulties modeling
the number of non-zero pixels, while GAN and BIB-AE better describe this distribution for photons
and the BIB-AE for pions.
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The main goal of training generative model approximations is to speed-up the sampling process.
Table 2 shows the time to simulate single showers using GEANT4 and the different generative mod-
els. For assessing practical benefits, the time needed to produce the training data, the time to train
generative models, and the possible amount of statistical amplification will need to be taken into
account, but the observed speed-ups of three-orders of magnitude are encouraging for future work.

Table 2: Computational performance of WGAN and BIB-AE generators on a single core of an Intel®

Xeon® CPU E5-2640 v4 (CPU) and NVIDIA® V100 with 32 GB of memory (GPU) compared to
GEANT4. For the generative models, the best performing batch size is shown and given by the mean
and standard deviation obtained for sets of 5000 showers.

Hardware Simulator Photons Pions
time/shower [ms] speed-up time/shower [ms] speed-up

CPU GEANT4 4082 ± 170 ×1 2684 ± 125 ×1

WGAN 61.44 ± 0.03 ×66 195.67 ± 0.56 ×14
BIB-AE 95.98 ± 0.08 ×43 36.05 ± 0.82 ×74

GPU WGAN 3.93 ± 0.03 ×1039 2.695± 0.004 ×996
BIB-AE 1.60 ± 0.03 ×2551 1.101± 0.004 ×2438

Figure 2: Differential distributions comparing physics quantities between GEANT4 (ground truth)
and the different generative models. The top (bottom) row shows photon (pion) showers. The energy
per-cell is measured in MeV for the bottom axis and in multiples of the expected energy deposit of
a minimum ionizing particle (MIP) for the top axis.
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5 CONCLUSIONS AND OUTLOOK

Fundamental physics is facing growing difficulties from the computing resources expanded on slow
Monte-Carlo-based simulations. While these simulations encode valuable physical knowledge and
are challenging to replace, better use of generated statistics is possible by using generative models.
In this contribution, we show the performance of GAN, Wasserstein-GAN, and the BIB-AE archi-
tecture on this task. We observe accurate modeling of physically relevant quantities over several
orders of magnitude and a speed-up over three orders of magnitude. For practical applications, the
fidelity will need to be further improved — down to percent level in a larger number of distributions
— and the generator needs to be more flexible by conditioning on particle type, incident position,
and incident angle in addition to the energy.
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