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Figure 1: Error-curve analysis for POD coefficient estimation.

ABSTRACT

Neural network (NN), which is known as a universal approximator, has been uti-
lized for a wide range of engineering purposes such as state estimation, anomaly
detection, and system control. However, it is also the fact that conventional linear
methods are still indispensable for them because of their uniqueness and inter-
pretability of modeling results. Of particular interest here is whether we can gain
some clues to develop more advanced NN techniques by comparing them to the
linear models in a fundamental manner. We here consider a canonical fluid flow
regression problem based on a proper orthogonal decomposition for an unsteady
fluid flow. Concretely, we compare a linear stochastic estimation and a multi-layer
perceptron from the perspective of the response on the error curve constructed by
weights inside the models when we add noisy perturbation to the input data. Our
analysis clearly visualizes the “robustness” against noise on the error-curve do-
main.

1 INTRODUCTION

Linear-theory-based analyses have contributed to the development of science and engineering to
date (Brunton & Kutz, 2019). One of the beauties of them is the generalizability and the transparency
of results provided by the models, which enables us toward practical application. However, there is
still a big hindrance to their uses since the real nature is governed by strong nonlinearities in both
space and time. Nonlinear neural networks (NNs) have recently acquired citizenship as one of the
considerable surrogates, although a black-box use of NNs is treated as the conundrum for practical
applications. Our idea here is to borrow some hints from the interpretable linear methods to improve
the practicability of NNs.

In this paper, we consider a canonical fluid flow regression problem to compare a linear stochastic es-
timation and a multi-layer perceptron from the perspective on noise robustness. The present models
attempt to estimate high-order proper orthogonal decomposition (POD) coefficients from low-order
counterparts of a flow around a two-dimensional cylinder (Loiseau et al., 2018), which is a simple
problem but contains a strong nonlinear input-output relationship. In particular, our analyses are
founded on the observation on the error surfaces constructed by weights inside the models.
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Figure 2: POD coefficients estimation from (a) 1st order coefficients ain = {a1, a2} and (b) 2nd &
3rd order coefficients, and (c) the L2 error norm.

2 METHODS

2.1 PROBLEM SETTING

We consider the estimation of high-order POD coefficients aout = {a3, a4, a5, a6} of flow around
two-dimensional cylinder at ReD = 100 from the information of low-order counterparts ain =
f(a1, a2) (Loiseau et al., 2018). Although the problem setting is quite low dimension thanks to the
assistance by POD, let us emphasize that this problem setting holds a strong nonlinearity because
the relationship between ain and aout is governed by the triadic interactions arising from the non-
linear term of the Navier–Stokes equations. Due to this relationship, Loiseau et al. (2018) reported
that high-order POD coefficients aout can be estimated with a linear superposition of high-order
terms of low-order POD coefficients, e.g., a21, a1a2, and a21a

2
2. Using this setup, we aim to reveal

the fundamental difference of linearity and nonlinearity inside models. The problem can mathemat-
ically be formed as aout = F(ain), where F denotes an estimation model. As the model F , we
use the LSE and the MLP, which will be described later. The flow snapshots are prepared with a
two-dimensional direct numerical simulation by numerically solving incompressible continuity and
Navier-Stokes equations (Kor et al., 2017). The POD is then taken for the collected snapshots to
decompose the flow field q as q = q0 +

∑M
i=1 aiϕi, where ϕ represents a POD basis, a is the POD

coefficient, q0 is the temporal average of the flow field, and M denotes the number of POD modes.
For training the MLP and LSE, we use 5000 snapshots.

2.2 MULTI-LAYER PERCEPTRON

We use a multi-layer perceptron (MLP) (Rumelhart et al., 1986) as an example of the neural net-
works. The present MLP contains hidden units of 4-8-16-8, while the number of output nodes is 4
(3rd to 6th POD modes). The number of input nodes varies depending on covered cases, which will
be explained later. Since the present MLPM attempts to output aout = {a3, a4, a5, a6} from the
input ain = f(a1, a2), the problem setting regarding weights wm inside the MLP can be represented
as

wm = argminwm
||aout −M(ain;wm)||2. (1)

2.3 LINEAR STOCHASTIC ESTIMATION

As an example of the linear methods, we consider a linear stochastic estimation (LSE) (Adrian
& Moin, 1988). The LSE expresses output data Q ∈ Rnoutput×ndata as a linear map wl ∈
Rninput×noutput with respect to input data P ∈ Rninput×ndata such that Q = wlP , where ndata
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Figure 3: Robustness for noisy input. (a) Dependence of the increase ratio of the L2 error norm
ε/ε[1/SNR=0] on noise magnitude. (b) aout with 1/SNR = 0.1 for the linear models with ain = a3rd

and the nonlinear MLP with ain = a1st.

is the number of training snapshots, ninput is the number of input attribute, and noutput is the num-
ber of output attribute. The linear map wl is optimized through the minimization manner as

wl = argminwl
‖ Q−wlP ‖2, (2)

which is analogous to the optimization of NNs. Note that we do not include penalization terms. e.g.,
L1 and L2 penalties, in the present loss function for fair comparison to the covered NNs in terms of
weight updates.

3 RESULTS

We first compare the LSE to the MLP with linear activation and nonlinear ReLU function to ex-
amine whether nonlinearity works well for the estimation or not. Moreover, we consider three
patterns of input f(a1,a2) for the LSE and the linear MLP, while using only a1 and a2 with
the nonlinear MLP. The input f(a1,a2) is a1st = {a1, a2} or a2nd = {a1, a2, a1a2, a21, a22} or
a3rd = {a1, a2, a1a2, a21, a22, a21a2, a1a22, a31, a32}. This investigation enables us to check whether
the linear models can also be utilized by giving a proper input or not, because Loiseau et al. (2018)
reported that the high-order coefficients aout can be represented using the quadratic expression of
a1 and a2, as mentioned above.

The estimated coefficients aout = {a3, a4, a5, a6} from only the information of the first-order
coefficients a1st = {a1, a2} are shown in figure 2(a). Only the nonlinear MLP is in reason-
able agreement with the reference in both coefficient maps, which reports the L2 error norm
ε = ||aout,ref − aout,est||2/||aout,ref ||2 of 1.00 (LSE), 1.00 (linear MLP), and 0.0119 (nonlinear
MLP). This suggests that a nonlinear activation function works effectively in estimation. However,
this nonlinear influence can be replaced by using a proper input data set, i.e., ain = {a2nd,a3rd},
even though we only use the linear methods, as shown in figures 2(b) and (c). By utilizing the input
up to 2nd order terms a2nd, the reasonable estimation for {a3, a4} can be performed, while that for
{a5, a6} requires the input up to 3rd order terms a3rd with both the LSE and the linear MLP. This
trend coincides with the fact that the POD coefficients of modes 3 and 4 can be expressed by the
quadratic expression of a1 and a2, and that of modes 5 and 6 can be written as the cubic expression
of a1 and a2 (Loiseau et al., 2018).

Although both linear methods employ well by giving a proper input as reported above, the LSE
slightly outperforms the linear MLP for the high-order coefficient inputs — let us then compare
these two methods in detail. To reveal the fundamental difference of the methods, we focus on the
robustness against noisy input. We here introduce the white Gaussian noise defined by the signal-
to-noise ratio (SNR), SNR = σ2

data/σ
2
noise, where σdata and σnoise respectively denote standard

deviations of input data and noise. The responses to noisy inputs are summarized in figure 3. We
use the LSE and the linear MLP with ain = a3rd as the linear models, and the nonlinear MLP with
ain = a1st is also monitored for comparison. Notably, the response of LSE is much more sensitive
than that of the covered MLPs, which shows the opposite behavior against the case without noise.
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Figure 4: Robustness of linear methods for noisy input. (a) Dependence of the increase ratio of the
L2 error norm ε/ε[1/SNR=0] on noise magnitude. (b) Error surfaces of output a5.

To identify the factor which is responsible for noise robustness, we construct a new linear MLP
modelM′(ain;wm′), which has no middle layer and no bias, such that wm′ ∈ Rninput×noutput . This
setting enables us to compare the MLP and the LSE fairly since the number of contained weights
inside them is identical with each other. The response to noisy input here is shown in figure 4(a).
Ever for this shallow settings, the MLP still shows advantage against the LSE in terms of noise
robustness. To examine this point more, we visualize the error curve surface by picking two weights
wa1 and wa3

1
which respectively correspond to input a1 and a31 up, and visualizing the error surface

of a5, as shown in figure 4(b). As shown, the optimized solutions through the minimization manner
of MLP and LSE are different with each other, which is likely due to the difference in optimization
methods. Moreover, what is striking here is that the noise addition drastically changes the shape of
the error surface of LSE, while that of MLP is just pushed up in the normal direction. It implies that
the weights obtained by the LSE can guarantee the minimum loss over the training data; however,
may not be the optimal solution from the viewpoint of noise robustness. In contrast, the location
of minimum point with the MLP does not change too much against the case without noise, which
indicates the robustness against the noisy input. Summarizing above, we can assess the robustness
against noisy perturbation by visualizing the change ratio of the error-curve surface.

4 CONCLUDING REMARKS

We compared the linear stochastic estimation (LSE) and the multi-layer perceptron (MLP) to explore
fundamental differences between them by focusing on the noise robustness. The models estimated
high-order proper orthogonal decomposition (POD) coefficients from low-order counterparts of a
flow around a two-dimensional cylinder. The nonlinear MLP can estimate the coefficients properly
from 1st-order input, while the LSE and linear MLP required up to 3rd-order input for estimation.
In addition, we found that the LSE is more sensitive to the noise than MLP. To clarify the cause of
the difference in response to noise, the error surface visualization was performed. The error surface
and the optimized weight of LSE were further different from that of the linear MLP, because of the
difference of optimization method. Moreover, the noise addition to the input greatly deformed the
error surface of the LSE, and this drastically pushed up the error at the optimization point, comparing
to the linear MLP. We found that the robustness against noisy data can be assessed by visualizing
the change ratio of the error-curve surface.
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