
Published as a workshop paper at ICLR 2021 SimDL Workshop

LEARNING GENERAL-PURPOSE CNN-BASED SIMULA-
TORS FOR ASTROPHYSICAL TURBULENCE

Alvaro Sanchez-Gonzalez,*,1 Kimberly Stachenfeld,*,1 Drummond B. Fielding,2

Dmitrii Kochkov,3 Miles Cranmer,4 Tobias Pfaff,1 Jonathan Godwin,1 Can Cui,2

Shirley Ho,2 Peter Battaglia1

1DeepMind, London, UK 2Center for Computational Astrophysics, Flatiron Institute, New York, NY
3Google Research, Cambridge, MA 4Princeton University, Princeton, NJ

*Equal contribution. alvarosg@google.com , stachenfeld@google.com

ABSTRACT

Given the rise of machine learning (ML) for simulation, an important question
is: to what extent can learned models supplement or replace traditional simula-
tors? Here we develop a fully learned simulator model based on domain-general
Convolutional Neural Network (CNN) methods, and study its performance on a
range of turbulence problems in astrophysics. We compare the learned model to
specialized PDE solvers in terms of spatial and temporal resolution, numerical
stability, and generalization performance. We find that the learned models outper-
form coarsened solvers on certain metrics, particularly in their ability to preserve
high-frequency information at low resolution, and describe ways to improve gen-
eralization beyond the training distribution. To our knowledge, our model is the
first to be trained on Athena++ (a state-of-the-art simulator widely used in com-
putational fluid dynamics and magneto-hydrodynamics), and more generally, the
first fully-learned astrophysical turbulence simulator.

1 INTRODUCTION

Many scientific disciplines depend on simulating turbulent fluid dynamics, from engineering ap-
plications like aeronautics [18] and medicine [19], to scientific domains ranging from small-scale
molecular dynamics [23] to large-scale simulation of galaxies for astrophysics [4]. Powerful spe-
cialized PDE solvers have a rigorous foundation in numerical analysis and maintain accuracy over
long integrations. However, because turbulent dynamics span several length scales, these solvers re-
quire high-resolution grids and therefore substantial computational resources. Otherwise, simulated
dynamics quickly depart from the underlying equations, often leading to the loss of high frequency
details.

Learned simulators are a promising avenue for maintaining accuracy at low resolutions because they
can adapt to capture the effective dynamics of larger scales on coarse grids. Learned simulators vary
in the relative extents to which they incorporate components from classical solvers, like closures and
subgrid discretization [5, 7, 16, 25, 10], versus more pure ML methods which are gaining traction in
scientific, engineering, and graphics domains [9, 14, 21, 26, 13, 12, 17]. Advantages of the pure ML
route are that the same model can be used without specialized knowledge of the domain and that
they do not require interfacing with solvers. However, fully learned simulators often work well only
when conditions are similar to the training distribution, which can limit their stability over time and
their generalization capabilities.

Here we use a CNN model that is not specifically specialized for turbulence simulation to study
how training choices lead to trade-offs in stability, generalization, and efficiency. We find that the
model can fit a variety of simulated turbulence datasets, and that training options (corrupting inputs
with noise, temporal downsampling) affect stability, generalization outside the training distribution,
preservation of scientifically relevant conserved quantities, and high-frequency information. We
compare the learned simulator to a PDE solver run at coarser grids, and find that the learned sim-
ulator outperforms the solver at the same resolution, and more accurately captures high-frequency
structure even at times outside what the model saw during training.

1

Published as a workshop paper at ICLR 2021 SimDL Workshop

0

2πPr
ed

ict
io

n

 a b

1D Kuramoto-Sivashinsky
Equation (KS-1D)

0 50 100 150
Time

0

2π

G.
 T

ru
th

Sp
at

ia
l c

oo
rd

in
at

e

Initial state

Prediction
after 30 model steps
(23040 solver steps)

Prediction
after 60 model steps
(46080 solver steps)

Prediction
after 90 model steps
(69120 solver steps)

 c 2D Incompressible Decaying Turbulence (IT-2D) (vorticity)
Prediction

after 119 model steps
(91392 solver steps)

Ground truth
after 119 steps

(91392 solver steps)

Initial state

Prediction
after 8 model steps
(512 solver steps)

Prediction
after 16 model steps
(1024 solver steps)

Prediction
after 24 model steps
(1536 solver steps)

 d 3D Compressible Decaying Turbulence (CT-3D) (energy)
Prediction

after 31 model steps
(1984 solver steps)

Ground truth
after 31 steps

(1984 solver steps)

In
iti

al
 st

at
e L=

0.
25

Pr
ed

ict
io

n
af

te
r 5

9
st

ep
s

(5
9k

 so
lv

er
 st

ep
s)

 T
ra

in
ed

 o
n

L=
0.

75

Pr
ed

ict
io

n
af

te
r 5

9
st

ep
s

(5
9k

 so
lv

er
 st

ep
s)

 T
ra

in
ed

 o
n

L=
{0

.5
, 0

.7
5,

 1
.,

1.
25

}
Gr

ou
nd

 tr
ut

h
af

te
r 5

9
st

ep
s

(5
9k

 so
lv

er
 st

ep
s)

L=
0.

5

L=
0.

75 L=
1

L=
1.

25

L=
1.

5

L=
1.

75 L=
2

 e 3D Compressible Turbulence Mixing Layer (CTRC-3D-ML) (energy)
Xt Xt+∆tLearned simulator

s(Xt; θ)

Encoder DecoderdCNNn
...

Processor
∆XX

×N
CNNenc CNNdec

... ...

Xt0 XT

x

y
features

ρ

P

vx

vy

vz

Figure 1: (a) Learned simulator schematic. (b-e) Predicted trajectories using the learned simulator.
Blue frames indicate ground truth, and green frames indicate out-of-distribution generalization. (b)
KS-1D: The learned simulator produces a plausible trajectory that follows the ground truth closely
for the first 150 steps (t < 75). (c) IT-2D: The learned model prediction remains accurate after 119
model steps (91,392 solver steps). (d) CT-3D: The learned model prediction remains accurate after
31 model steps (1984 solver steps). (e) CTRD-3D-ML. Predicted state after 59 model steps (59,000
solver steps) on multiple box sizes, for models trained on a single box size (L = 0.75) (row 2) and
a range of box sizes (L ∈ {0.5, 0.75, 1., 1.25}) (row 3). Videos available at tinyurl.com/dl4sturb.

2 EXPERIMENTAL TURBULENT DOMAINS

We use four turbulence PDEs (Fig. 1b-e) (see Appendix):
1D Kuramoto-Sivashinsky Equation (KS-1D): A PDE that generates unstable, chaotic dynamics
in 1D, solved using Fourier spectral method [11, 22].
2D Incompressible Decaying Turbulence (IT-2D): Fluid flow under Navier-Stokes in which
small-scale eddies decay into large-scale structures due to the inverse energy cascade, relevant to
planetary atmospheric flow, solved using Direct Numerical Simulation [10].
3D Compressible Decaying Turbulence (CT-3D): Transonic turbulent flow under Navier-Stokes
assuming adiabatic equation of state, common in astrophysics [15], solved with Athena++ [24].
3D Compressible Turbulence with Radiative Cooling Mixing Layer (CTRC-3D-ML): Turbulent
mixing from the Kelvin-Helmholtz instability, caused by velocity differences across the interface be-
tween fluids of different densities, solved with Athena++. Mixing involves strong cooling, leading
to net flow from the low-density phase into the mixing layer, and is relevant to galaxy formation [6].

3 MODEL

Learned Simulation Framework on Grids Our objective is to learn a simulation model s that
maps Xt to Xt+∆t. We let Xt ∈ X be a n+1 dimensional tensor specifying the state variables
for each point on a grid with n spatial dimensions and one feature dimension at time t. Applying
physical dynamics over K time steps yields a trajectory of states (Xt0 , ..., XtK). A simulation s :

X → X maps a stateXt to a future state X̃t+∆t = s(Xt). We denote a simulated “rollout” trajectory
as (Xt0 , X̃t1 , ..., X̃tK), where Xt0 represents initial conditions given as input, and simulated future
states are computed iteratively. Our learnable simulator (Fig. 1a), uses a neural network NN (with
weights θ) to model one-step of the simulation as X̃t+∆t = s(Xt; θ) = Xt + NN(Xt; θ).

Neural Network Architecture The model is comprised of a single-CNN encoder, a processor
network, and a single-CNN decoder. The processor consists ofN = 4 dilated CNN blocks (dCNNn)
with unshared weights connected in series and residual connections [27, 8]. Each block consists
of 7 dilated CNN layers with dilation rates of (1, 2, 4, 8, 4, 2, 1). Residual connections help

2

https://drive.google.com/drive/folders/1JQkRiKOBnf_C_CvRqHdY917Tb3U6wbTV?usp=sharing

Published as a workshop paper at ICLR 2021 SimDL Workshop

10−2

10−1

100

On
e

st
ep

 c
No noise

 e
Noise 0.01

1 2 4 8 16 32 64 12
8

25
6

100

101

Ro
llo

ut

Time step [1e-3]

 d
1 2 4 8 16 32 64 12
8

25
6

 f

0.005
0.010
0.015

On
e

st
ep a

3D Compressible Decaying Turbulence
(energy field RMSE, 3 seeds)

No noise Noise 0.01

0.0 0.2 0.4 0.6 0.8 1.0
Time (1e-3 time step)

10−2

108

1018

Ro
llo

ut b
10−1RM

SE

 g

3D Compressible Decaying Turbulence
(energy field accuracy compared to athena at 128,

3 seeds)

Athena at 64
Athena at 32

ResNet at 32
(No noise)
ResNet at 32
(Noise 0.01)

0.5

1.0

Co
rre

la
tio

n

Training
Region

Generalization
Region

 h

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time

107

109

M
SE

 p
ow

er
sp

ec
tra

l e
rro

r

 i

0.00 0.25 0.50 0.75 1.00
Fraction of solenoidal (as opposed

to compressive) components in initial velocity

0.2

0.4

0.6

En
er

gy
 fi

el
d

RM
SE

co
m

pa
re

d
to

 A
th

en
a

at
 1

28

training
value j

3D Compressible Decaying Turbulence
Initial condition generalization

(3 seeds, 1e-2 noise)

0.5 1.0 1.5 2.0
Box length (L)

−1.6

−1.4

−1.2

−1.0

−0.8

Co
ol

in
g

ve
lo

cit
y

(v
z i

n
lo

w
de

ns
ity

 p
ha

se
) k

Mixing Layer (CTRC-3D-ML)
(3 seeds, 1e-3 noise)

Ground Truth
Train L=0.75
Train L={0.5,0.75,1,1.25}

Figure 2: (a-b) One-step and rollout error for a model trained with σ = 0.01 and without noise
σ = 0. (c-f) Temporal coarsening impact on one-step and rollout error. Little downsampling <8
yields lower one-step errors (c), however requires taking more model steps during a rollout which
can cause instability (d). These instabilities can be mitigated by training with noise (f). Higher
coarsening>32 increases one-step and rollout error. (g-i) Energy MSE error, correlation, and power
spectrum error as a function of time, for rollouts of learned models trained on high-resolution Athena
data (1283) downsampled to 323, and for Athena ran at lower spatial resolutions (643, 323). (j)
Generalization to different initial conditions. The model generalizes well to initial velocities with
higher solenoidal, but not to higher compressive components. (k) Cooling velocity generalization as
function of the box size in the mixing layer. Training on multiple sizes improves performance.

avoid vanishing gradients, and dilations provide longer-range communication while preserving local
structure. We use periodic padding for spatial axes with periodic boundary conditions, and fixed
padding for spatial axes with fixed boundary conditions.

Training We use an L2 loss `(Xt, Xt+∆t) = MSE(NN(Xt; θ),∆X) to optimize parameters θ.
Input Xt and target ∆X = Xt+∆t −Xt features are normalized to be zero-mean and unit variance.
Optionally, we trained with Gaussian random noise with fixed variance σ added to the inputXt of the
loss function, as this has been shown to improve stability of rollouts and prevent error accumulation
by training the model to correct for small errors [20, 21, 17]. See Appendix for more details.

4 RESULTS

We evaluate our learned simulators in terms of stability, performance, efficiency, and generaliza-
tion. Results are evaluated on held-out test trajectories sampled from the same distribution used for
training (except for generalization sections). All units are dimensionless.

Domain generality Unlike numerical solvers, which are PDE specific, learned simulator models
can be designed to be reusable. Here, the same general-purpose architecture and loss, trained on
each of the domains, learns to capture a range of qualitatively diverse turbulent dynamics (Fig. 1b-e,
videos: tinyurl.com/dl4sturb), using as few as 27 training trajectories (CT-3D).

Stability While scientific simulators are typically designed to be stable over time, a common fail-
ure mode in learned models is that small errors can accumulate over rollouts and lead to a domain
shift. We speculate this is because, as the model is fed its most recent prediction back in as input
for predicting future steps, its distribution of input states begins to deviate from that experienced
at training, where it fails to generalize and instead makes arbitrarily poor predictions. We found
that adding Gaussian noise σ = 0.01 to the inputs Xt during training led to less accurate one-step
predictions, but more stable trajectories (Fig. 2a,b), presumably because the training distribution has
broader support and the model is optimized to map deviant inputs back to the training distribution.

Temporal coarsening An advantage of learned simulators is that they can exploit a larger step
size than the numerical solver, as they can learn to compensate for errors in finite-difference approx-
imations of the time derivatives. As expected, while the one-step error is at its lowest when using

3

https://drive.google.com/drive/folders/1JQkRiKOBnf_C_CvRqHdY917Tb3U6wbTV?usp=sharing

Published as a workshop paper at ICLR 2021 SimDL Workshop

smaller time steps, the rollout error has an optimal time step at around 32 (Fig. 2c-f). This demon-
strates the trade-off between large time steps (> 32), as predictions become more challenging, or
small time steps (< 16), which require more simulator steps, often yielding unstable models (Fig.
2d), although these may still be stabilized to some extent with training noise (Fig. 2f).

Spatial coarsening Numerical solvers are known to lose high frequency information about dy-
namics (e.g. due to numerical viscosity) when applied to grids that are too coarse, which learned
models may be sufficiently expressive to capture. We compare the energy predictions of our model
run at a resolution of 323 on ground truth solver data downsampled from 1283 to those produced
by the solver at low resolutions of 323 and 643. All grids are downsampled to 323 for the compari-
son. The learned simulators outperform both the same- and higher-resolution Athena++ rollouts in
terms of the Power Spectral Density, as the Athena++ simulators lose high frequency components
that the learned simulators preserve (see videos, link in Fig. 1 caption). We further find that, in
terms of MSE and correlation on the training region (t < 1 in Fig. 2g-i) the learned model running
at 323 slightly outperforms Athena++ at the same resolution of 323 but not Athena++ at 643.

Running time Learned simulators can accelerate simulations not only by coarsening in time and
space, but also by running off-the-shelf on specialized GPU hardware, unlike e.g. Athena++which
is CPU specific. By downsampling in time (∆t = 0.5 → 32) and space (1283 → 323) the CT-3D
learned model running on a single GPU speeds up the wall-time simulation time by a factor of 1000
compared to Athena++ running on an 8-core CPU (More details in Appendix).

Constraint satisfaction and preserved quantities Traditional solvers often implement con-
straints to preserve conserved quantities. Learned simulators, however, will not necessarily learn
such constraints. We observe that training with noise helps preserves local constraints (e.g. keeping
the divergence of the incompressible fluid near 0), but does not always prevent slow drift in global
quantities (e.g. mean value of the signal in the KS equation, or total energy/mass/momentum in 3D
turbulence), possibly due to the local nature of the convolutional model (Supp. Fig. A.1).

Generalization to longer rollouts We evaluate the stability of the model for rollouts longer than
those in the training data. In the case of KS-1D, which has stationary dynamics, the model remains
stable for longer trajectories (Supp. Fig. A.5). On the other hand, in CT-3D, for which the dynamics
are not stationary under decaying turbulence, even 323 Athena++ overtakes the learned models in
terms of both MSE and and correlation (t > 1 in Fig. 2g-i).

Generalization to different initial conditions We varied the ratio of solenoidal to compressive
components in the initial velocity field in CT-3D (Fig. 2j) and found the model generalizes well
to more solenoidal but not to more compressive initial conditions, possibly due to faster turbulence
decay under compressive conditions.

Generalization to larger boxes We tested the generalization capability of the CTRD-3D-ML
model to boxes with different size L (Fig. 1e) and measured the predicted cooling velocity (small
laminar flow in the low density phase perpendicular to the interface, see Appendix for more details).
The cooling velocity is of scientific relevance and known to depend on the box size. We found that
unless the model is trained on a range of sizes, the predicted cooling velocity does not follow the
right trend, and even when trained on a range of sizes, generalization outside the training range is
not reliable across seeds (Fig. 2k). We speculate that achieving this form of generalization would
require stronger inductive biases and/or more sophisticated dataset engineering.

5 CONCLUSIONS

Fully learned turbulence simulators can learn directly from data, require less specialized engineer-
ing, run efficiently on general-purpose hardware, and can be applied to diverse astrophysics envi-
ronments. We find that our learned simulators outperform comparably coarse solvers (in particular,
preserving high frequency structure), and that training noise and temporal coarsening improve stabil-
ity. However, out-of-distribution generalization remains a challenge for our general-purpose models.
Future work should explore improving generalization by extending work on theoretically-motivated
state representations and more powerful general-purpose inductive biases.

4

Published as a workshop paper at ICLR 2021 SimDL Workshop

ACKNOWLEDGEMENTS

We thank Irina Higgins for providing feedback on an earlier version of the manuscript. D.B.F. is
supported by the Simons Foundation through the Flatiron Institute.

REFERENCES

[1] Guido Boffetta and Robert E. Ecke. Two-dimensional turbulence. Annual Review of Fluid
Mechanics, 44(1):427–451, 2012. doi: 10.1146/annurev-fluid-120710-101240. URL https:
//doi.org/10.1146/annurev-fluid-120710-101240.

[2] Guido Boffetta and Robert E Ecke. Two-dimensional turbulence. Annual Review of Fluid
Mechanics, 44:427–451, 2012.

[3] Axel Brandenburg and Åke Nordlund. Astrophysical turbulence modeling. Reports on
Progress in Physics, 74(4):046901, April 2011. doi: 10.1088/0034-4885/74/4/046901.

[4] V. M. Canuto and J. Christensen-Dalsgaard. Turbulence in astrophysics: Stars. Annual Review
of Fluid Mechanics, 30(1):167–198, 1998. doi: 10.1146/annurev.fluid.30.1.167.

[5] Karthik Duraisamy, Gianluca Iaccarino, and Heng Xiao. Turbulence modeling in the age
of data. Annual Review of Fluid Mechanics, 51(1):357–377, Jan 2019. ISSN 1545-4479.
doi: 10.1146/annurev-fluid-010518-040547. URL http://dx.doi.org/10.1146/
annurev-fluid-010518-040547.

[6] Drummond B. Fielding, Eve C. Ostriker, Greg L. Bryan, and Adam S. Jermyn. Multiphase
gas and the fractal nature of radiative turbulent mixing layers. The Astrophysical Journal,
894(2):L24, May 2020. ISSN 2041-8213. doi: 10.3847/2041-8213/ab8d2c. URL http:
//dx.doi.org/10.3847/2041-8213/ab8d2c.

[7] Jonathan B. Freund, Jonathan F. MacArt, and Justin Sirignano. DPM: A deep learning PDE
augmentation method (with application to large-eddy simulation), 2019.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015.

[9] Byungsoo Kim, Vinicius C. Azevedo, Nils Thuerey, Theodore Kim, Markus H. Gross, and
Barbara Solenthaler. Deep fluids: A generative network for parameterized fluid simulations.
CoRR, abs/1806.02071, 2018. URL http://arxiv.org/abs/1806.02071.

[10] Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P. Brenner, and Stephan
Hoyer. Machine learning accelerated computational fluid dynamics, 2021.

[11] Yoshiki Kuramoto. Diffusion-Induced Chaos in Reaction Systems. Progress of Theoretical
Physics Supplement, 64:346–367, 02 1978. ISSN 0375-9687. doi: 10.1143/PTPS.64.346.
URL https://doi.org/10.1143/PTPS.64.346.

[12] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differ-
ential equations, 2020.

[13] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial
differential equations, 2020.

[14] Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal lin-
ear embeddings of nonlinear dynamics. Nature Communications, 9(1):4950, 2018. ISSN
2041-1723. doi: 10.1038/s41467-018-07210-0. URL https://doi.org/10.1038/
s41467-018-07210-0.

[15] Steven A. Orszag and G. S. Patterson. Numerical Simulation of Three-Dimensional Homo-
geneous Isotropic Turbulence. Physical Review Letters, 28(2):76–79, January 1972. doi:
10.1103/PhysRevLett.28.76.

5

https://doi.org/10.1146/annurev-fluid-120710-101240
https://doi.org/10.1146/annurev-fluid-120710-101240
http://dx.doi.org/10.1146/annurev-fluid-010518-040547
http://dx.doi.org/10.1146/annurev-fluid-010518-040547
http://dx.doi.org/10.3847/2041-8213/ab8d2c
http://dx.doi.org/10.3847/2041-8213/ab8d2c
http://arxiv.org/abs/1806.02071
https://doi.org/10.1143/PTPS.64.346
https://doi.org/10.1038/s41467-018-07210-0
https://doi.org/10.1038/s41467-018-07210-0

Published as a workshop paper at ICLR 2021 SimDL Workshop

[16] Jaideep Pathak, Mustafa Mustafa, Karthik Kashinath, Emmanuel Motheau, Thorsten Kurth,
and Marcus Day. Using machine learning to augment coarse-grid computational fluid dynam-
ics simulations, 2020.

[17] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-
based simulation with graph networks. In International Conference on Learning Representa-
tions, 2021. URL https://openreview.net/forum?id=roNqYL0_XP.

[18] Li Rhie, C Chow. Numerical study of the turbulent flow past an airfoil with trailing edge
separation. AIAA Journal, 21(11):1525–1532, 1983.

[19] Ahmed M. Sallam and Ned H. C. Hwang. Human red blood cell hemolysis in a turbulent shear
flow: Contribution of reynolds shear stresses. Biorheology, 21(6):783–797, 1984.

[20] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Ried-
miller, Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for
inference and control. In International Conference on Machine Learning, pp. 4470–4479.
PMLR, 2018.

[21] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Pe-
ter Battaglia. Learning to simulate complex physics with graph networks. In International
Conference on Machine Learning, pp. 8459–8468. PMLR, 2020.

[22] G.I. Sivashinsky. Nonlinear analysis of hydrodynamic instability in laminar flames—i. deriva-
tion of basic equations. Acta Astronautica, 4(11):1177–1206, 1977. ISSN 0094-5765. doi:
https://doi.org/10.1016/0094-5765(77)90096-0. URL https://www.sciencedirect.
com/science/article/pii/0094576577900960.

[23] E. R. Smith. A molecular dynamics simulation of the turbulent couette minimal flow unit.
Physics of Fluids, 27(11):115105, 2015. doi: 10.1063/1.4935213.

[24] James M. Stone, Kengo Tomida, Christopher J. White, and Kyle G. Felker. The athena++
adaptive mesh refinement framework: Design and magnetohydrodynamic solvers. The As-
trophysical Journal Supplement Series, 249(1):4, Jun 2020. ISSN 1538-4365. doi: 10.3847/
1538-4365/ab929b. URL http://dx.doi.org/10.3847/1538-4365/ab929b.

[25] Kiwon Um, Robert Brand, Yun, Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-Loop:
Learning from differentiable physics to interact with iterative PDE-solvers, 2021.

[26] Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards
physics-informed deep learning for turbulent flow prediction, 2020.

[27] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions, 2016.

6

https://openreview.net/forum?id=roNqYL0_XP
https://www.sciencedirect.com/science/article/pii/0094576577900960
https://www.sciencedirect.com/science/article/pii/0094576577900960
http://dx.doi.org/10.3847/1538-4365/ab929b

Published as a workshop paper at ICLR 2021 SimDL Workshop

A APPENDIX

Hyperparameter Value

Kernel size 3
Latent size 48
Activation ReLU

Dilated block depth 7
Dilated block dilations (1, 2, 4, 8, 4, 2, 1)

processor blocks N 4
Shared processors? No

Loss MSE

Table A.1: Model hyperparameters.

Compressible
KS Equation Incompressible Compressible Radiative Cooling

Decaying Decaying Mixing Layer

Numerical Solver Fourier Method DNS Athena++ Athena++
Spatial dims 1 2 3 3

Features 1 2 5 5
Features vx vx, vy ρ, vx, vy, vz, P ρ, vx, vy, vz, P

Box size
Lx 2π 2π 1 0.25 to 2
Ly n/a 2π 1 0.25 to 2
Lz n/a n/a 1 3

Grid element size
Solver 2π / 256 2π / 576 1 / 128 1 / 128

Learned model 2π / 64 2π / 48 1 / 32 1 / 32
(relative to solver) 4x 12x 4x 4x

Warm-up duration 75 500 0.05 2.32
Trajectory duration 181 400 1 7.226

Time step
Solver 0.5 0.00436 0.0005 0.00012 to 0.00014

Learned model 0.5 3.35 0.032 0.12
(relative to solver) 1x 768x 64x 1000x to 875x

Trajectories
Training 1000 190 27 20 if Lx = 0.75

5 if Lx 6= 0.75
Validation 100 10 4 1 per Lx

Test 100 10 4 1 per Lx

Training details
Early stopping? No No No Yes

Batch size 32 8 1 1 (4 if multisize)
Noise 1e-2 1e-4 1e-2 1e-3

Table A.2: Dataset details. ρ refers to density, P tp pressure, and vx, vy, vz to velocity components.
Warm-up refers to the initial transient from initial conditions which is influenced by the underlying
numerical scheme and discarded from evaluation and training. Figures are dimensionless.

7

Published as a workshop paper at ICLR 2021 SimDL Workshop

A.1 ADDITIONAL DATASET DETAILS

A.1.1 1D KURAMOTO-SIVASHINSKY (KS) EQUATION

This is a well-studied 1D PDE that generates unstable, chaotic dynamics in 1 dimension [11, 22]
with periodic boundaries. The ground truth simulations are computed using the Fourier Spectral
Method. Initial condition was set to cos (w1x+ φ1)(1 + sin (w2x+ φ2)), where x ranges from 0
to 2π, φi are sampled uniformly from [0, 2π), and w1 are integers sampled uniformly from [1, 12).
We perform a warmup from this initial condition for 75 simulation time units. This dataset does not
have special relevance to astrophysics; however, it is a well-studied chaotic equation that is useful
for assessing the ability of our learned models to capture highly unstable nonlinear dynamics.

A.1.2 2D INCOMPRESSIBLE DECAYING TURBULENCE

This models fluid flow described by the Navier-Stokes equations in which small-scale eddies decay
into the large-scale structures due to the inverse energy cascade [2]. The underlying simulations
were performed by solving the incompressible Navier-Stokes equations using a Direct Numerical
Simulation (DNS) finite-volume solver. Boundaries along both dimensions are periodic, and the
initial conditions consist of random velocity fields with small-scale variation. Initial conditions for
different trajectories were obtained by sampling a high-resolution velocity field from a log-normal
distribution of amplitude 1 and wavenumber k = 10. We perform a warmup for 500 simulation time
units, this is done to discard the transient flow that is heavily influenced by the underlying numerical
scheme. These simulations are scientifically relevant to open questions in atmospheric flows on solar
system planets and extrasolar planets [1].

A.1.3 3D COMPRESSIBLE DECAYING TURBULENCE

This models decaying transonic Navier-Stokes turbulent flow in a 3D cubic box with periodic bound-
ary conditions [e.g., 15]. These simulations adopt an adiabatic equation of state with a constant
adiabatic index γ = 5/3. Simulations were carried out with Athena++ [24]. The initial turbulence
is driven on scales ≥ L, the size of the box. The turbulent driving pattern in the initial condition is
split into its compressive and solenoidal components using a Helmholtz decomposition. The rela-
tive strength of these two components is varied from purely compressive to purely solenoidal. The
initial driving pattern results in a root-mean-squared velocity of

√
2cs, where c2s = (5/3)(P/ρ) is

the sound speed of the fluid. The initial conditions are varied across trajectories by randomizing the
phase of the spectral components, leading to different pattern in real space. We perform a warmup
for 0.05 simulation time units. Compressible turbulence is ubiquitous in astrophysical environments,
so understanding the dynamics and properties of these flows on small and large scales plays a crucial
role in regulating planet, star, black hole, and galaxy formation [3].

A.1.4 3D COMPRESSIBLE RADIATIVE COOLING MIXING LAYER DYNAMICS

These simulations model the interplay of radiative cooling and mixing that results from turbulence
driven by the Kelvin-Helmholtz instability, which can arise when there is velocity difference across
the interface between two fluids of different densities. This process is common in essentially all
aspects of galaxy formation [6] and has close parallels to many processes in atmospheric flows. The
simulations are set up as a boundary problem initialized with a low-density fluid (ρ = 0.01) on the
top half of the domain (z > 0) moving in the positive x direction (vx = 2.04, vy = vz = 0), and
a high-density fluid (ρ = 1.) moving in the negative x direction in the bottom half of the domain
(vx = −2.04, vy = vz = 0). The initial pressure is set to 1. The x and y boundaries are periodic,
while the z boundary (perpendicular to the interface) is fixed to the initial conditions. To break the
symmetry, small perturbations to vz are added around the boundary. This perturbations are changed
across trajectories by randomizing the phase of the spectral components, leading to different pattern
in real space. We perform a warmup for 2.32 simulation time units. Simulations were carried out
with Athena++ [24].

This data presents a few unique challenges compared to the others. First, it was the only domain
with fixed boundary conditions. Second, because turbulent dynamics are limited to the vicinity of
the mixing layer, and because the behavior of the fluid above, at, and below the mixing layer is
markedly different, there is less data representative of each type of fluid dynamic behavior.

8

Published as a workshop paper at ICLR 2021 SimDL Workshop

A.2 ADDITIONAL MODEL DETAILS

The learned simulator consisted of a CNN encoder, a dilated CNN processor with residual skip
connections, and a CNN decoder. The parameters of the model are listed in Table A.1.

CNN parameters All individual CNNs use a kernel size of 3 and have 48 output channels (except
the decoder, which has an output channel for each feature). Each individual CNN layer in the
processor is immediately followed by a rectified linear unit (ReLU) activation function. The Encoder
CNN and the Decoder CNNs do not use activations.

Dilated connections The dilation rate in the CNN filter introduces space between each element
in the filter. Whereas a standard CNN filter with kernel 3 would operate over 3 adjacent pixels, a
dilated CNN filter with kernel 3 and dilation 2 will operate over 3 pixels spaced at intervals of 2 in
each dimension, spanning a field 5 pixels wide. This increases the scale of the CNN kernels while
preserving the number of parameters and the resolution.

CNN padding For each dimension in X with periodic boundary conditions, we implemented
periodic padding. For dimensions with a fixed boundary condition, we forced the boundary to a
value rather than letting the model predict it, and masked the loss so the model was not trained to
predict boundary conditions. The tensor was padded with repetitions of the boundary value. We also
augmented the input state with a feature that indicated fixed-boundary versus non-boundary states
using a one-hot vector, so the model could distinguish them.

A.3 ADDITIONAL TRAINING DETAILS

Training noise In some cases, we trained with Gaussian random noise with fixed variance σ added
to the input Xt of the loss function. Note that this not only affects the input to the neural network,
but also slightly modifies the target ∆X = Xt+∆t − Xt (and also impacts the variance used to
normalize targets).

Loss At training time we sample pairs of input-output states (separated by the model time step)
from the trajectories, and perform gradient updates based on a single step of the model. We do not
rollout the model during training.

Optimization We optimized the loss using an Adam optimizer. We trained the models for up to
10M steps, with exponential learning rate decay annealed from 1e−4 to 1e−7 in the first 6M steps.
Models usually reached convergence at around 5M steps. Training took up to a week on an NVIDIA
V100 GPU.

Hyper-parameter optimization We did not perform exhaustive hyper-parameter optimization,
except on the scale of the noise (which we scanned for each domain) and some informal tuning of
the depth of the dilated blocks (to make sure the network was deep enough for the most challenging
domain). Note that achieving optimal performance on test trajectories from the training distribution
was not part of the scope of this work, and there are likely hyperparameters that would improve
performance over our results.

Validation All of the research was performed by looking at performance on the validation sets.
The test set was completely held-out until final evaluation prior to writing the paper.

Early stopping For the Mixing Layer Turbulence (CTRD-3D-ML), which was more prone to
overfitting, we used early stopping based on the validation performance. For all other models we
simply evaluated the model as it was at the end of training.

A.4 ADDITIONAL RESULTS

Three instances of each model were trained 3 times using 3 different initialization seeds. Bar plots
indicate median performance and bars indicate min-max performance. We chose the energy field

9

Published as a workshop paper at ICLR 2021 SimDL Workshop

E = 1
2ρv

2 + 3
2P as the quantitative metric of 3D turbulence for the main text, as it summarizes

performance on all state variables.

Figures and videos for 3D environments (CTRD-3D-ML and CT-3D) show a single slice of the 3D
grid at y = 0, displaying the x and z coordinates in the horizontal and vertical axis, respectively.

Downsampling in time Fig. A.2 as well as videos (tinyurl.com/dl4sturb) show models for KS-1D,
IT-2D, and CT-3D models trained and working well on a wide range of time step sizes. Note that
for a fair comparison in Fig. 2d,f performance is averaged across only time steps that are predicted
for all models (e.g. multiples of the largest time step, 256).

Downsampling in space All comparisons across spatial resolutions are always obtained by first
downsampling the data into a common 323 grid, using an approach that preserves mass, momentum,
and energy (Same approach used by Athena++). Fig. A.3 shows the downsampling comparisons
equivalent to Fig. 2g-i for each of the 5 state variables independently.

Running time For 1 simulation time unit of CT-3D, the CPU runtime for Athena++ with 8
CPU processors is ∼4s, ∼60s, and ∼1000s for 323, 643, and 1283 resolutions, respectively (quartic
scaling, as the time step is also scaled with the resolution to compensate for numerical viscosity). In
comparison, the learned model’s runtime is 1s on an NVIDIA V100 GPU, and 20-30s on a 8-core
CPU. Note that the learned model runs at reduced spatial and temporal resolution, but preserves
the dynamics of the high resolution 1283 Athena++ simulation. Simulations in Athena++ may
be faster if implemented for GPUs. However, because scientific simulators like Athena++ are
specialized, each simulator’s GPU implementation requires specialized engineering effort, whereas
learned models can take advantage of methods designed more generally for deep learning.

Cooling velocity Having reliable models that generalize to larger boxes increases the applicability
of learned models to scientific domains by enabling experiments in regions of parameter space that
would otherwise be prohibitively expensive to simulate. For example, for CTRC-3D-ML, the dy-
namics undergo a transition when the box width increases relative to the cooling length (vturbtcool),
which is difficult to study because simulations for these widths essentially prohibitive. Thus, we
want to understand what affects the learned simulator’s ability to generalize to a range of box widths
(the length Lx and width Ly of the input tensor X) not previously seen in the training data. For
CTRD-3D-ML, we can look at the cooling velocity, the average in-flowing velocity at the low den-
sity fluid boundary that develops as a means to resupply the energy that has been radiated away in
the mixing layer. Cooling velocity is a useful metric because it is a scalar quantity that depends on
the box width. Furthermore, understanding how turbulent dynamics at a mixing layer pull heat from
the surroundings is scientifically relevant for questions in astrophysics [6]. We evaluate generaliza-
tion to different box sizes (Lx = Ly ∈ [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0]) (Fig. 2k). We find
that the model trained on box length Lx = Ly = 0.75 (orange) is not able to produce trajectories
with the correct cooling velocity for other box sizes. However, we also find that augmenting the
dataset with data from a range of box sizes (Lx = Ly ∈ [0.5, 0.75, 1.0, 1.25]) improves accuracy
of the cooling velocity estimate for the unseen box lengths, although the generalization outside the
training domain remains imperfect and unreliable across seeds. We speculate that achieving this
form of generalization would require stronger inductive biases and/or more sophisticated dataset
engineering.

KS-1D generalization Figs. A.4 and A.5 show generalization to larger domains and longer tra-
jectories. While the learned simulations do not perfectly capture the ground truth, we see that
qualitative features of turbulence are preserved across the rollout.

10

https://drive.google.com/drive/folders/1JQkRiKOBnf_C_CvRqHdY917Tb3U6wbTV?usp=sharing

Published as a workshop paper at ICLR 2021 SimDL Workshop

0 200 400 600 800

10−1

101

KS
-1

D
M

ea
n

RMSE in preserved quantities
(3 seeds)

No noise
Noise 1e-2

0 100 200 300 400
Time

10−2

10−1

In
co

m
pr

es
sib

le
 T

ur
bu

le
nc

e
 (I

T-
2D

) D
iv

er
ge

nc
e

No noise
Noise 1e-4

1.00

1.05

M
ea

n
De

ns
ity

Training
Region

Generalization
Region

3D Compressible Decaying Turbulence
Comparison to Athena at 128

(3 seeds)
Athena at 64
Athena at 32
ResNet at 32
(No noise)
ResNet at 32
(Noise 0.01)

−0.10

−0.05

0.00

M
ea

n
X

M
om

en
tu

m

−0.1

0.0

0.1

M
ea

n
Y

M
om

en
tu

m

0.0

0.1

M
ea

n
Z

M
om

en
tu

m

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time

1.9

2.0

2.1

M
ea

n
En

er
gy

Figure A.1: (left) KS equation (KS-1D) net velocity error, and Incompressible Turbulence (IT-2D)
divergence error as function of model step. Training with noise helps keeping the values bounded
to be close to 0. (right) Preservation of the 5 conserved quantities in 3D Compressible Turbulence
(CT-3D) as a function of time. In this case, training with noise does not completely prevent drift of
the conserved quantities.

0

2πGr
ou

nd
 T

ru
th

Example 0 Example 1 Example 2 Example 3

0

2πPr
ed

ict
io

n
Do

wn
sa

m
pl

e
1

0

2πPr
ed

ict
io

n
Do

wn
sa

m
pl

e
2

0

2πPr
ed

ict
io

n
Do

wn
sa

m
pl

e
4

0

2πPr
ed

ict
io

n
Do

wn
sa

m
pl

e
8

0

2πPr
ed

ict
io

n
Do

wn
sa

m
pl

e
16

0

2πPr
ed

ict
io

n
Do

wn
sa

m
pl

e
32

0

2πPr
ed

ict
io

n
Do

wn
sa

m
pl

e
64

0

2

RM
SE

0 50 100 150
Time

0

1

Co
rre

la
tio

n

0 50 100 150
Time

0 50 100 150
Time

0 50 100 150
Time

Downsample
factor
in time

1
2
4
8
16
32
64

Figure A.2: (top) Sample trajectories from the model trained on the KS-1D dataset at different
temporal downsampling factors. (bottom) MSE and correlation performance of ML models for
different downsampling factors in time as a function of simulation steps.

11

Published as a workshop paper at ICLR 2021 SimDL Workshop

10−1

RM
SE

3D Compressible Decaying Turbulence
(Density field accuracy compared to athena at 128,

3 seeds)

Athena at 64
Athena at 32

ResNet at 32
(No noise)
ResNet at 32
(Noise 0.01)

0.5

1.0

Co
rre

la
tio

n

Training
Region

Generalization
Region

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time

106

107

108

M
SE

 p
ow

er
sp

ec
tra

l e
rro

r

10−2

10−1

RM
SE

3D Compressible Decaying Turbulence
(VelocityX field accuracy compared to athena at 128,

3 seeds)

Athena at 64
Athena at 32

ResNet at 32
(No noise)
ResNet at 32
(Noise 0.01)

0.5

1.0

Co
rre

la
tio

n

Training
Region

Generalization
Region

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time

106

108

M
SE

 p
ow

er
sp

ec
tra

l e
rro

r

10−2

10−1

RM
SE

3D Compressible Decaying Turbulence
(VelocityY field accuracy compared to athena at 128,

3 seeds)

Athena at 64
Athena at 32

ResNet at 32
(No noise)
ResNet at 32
(Noise 0.01)

0.5

1.0

Co
rre

la
tio

n

Training
Region

Generalization
Region

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time

106

108

M
SE

 p
ow

er
sp

ec
tra

l e
rro

r

10−2

10−1

RM
SE

3D Compressible Decaying Turbulence
(VelocityZ field accuracy compared to athena at 128,

3 seeds)

Athena at 64
Athena at 32

ResNet at 32
(No noise)
ResNet at 32
(Noise 0.01)

0.5

1.0

Co
rre

la
tio

n

Training
Region

Generalization
Region

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time

106

108

M
SE

 p
ow

er
sp

ec
tra

l e
rro

r

10−1

RM
SE

3D Compressible Decaying Turbulence
(Pressure field accuracy compared to athena at 128,

3 seeds)

Athena at 64
Athena at 32

ResNet at 32
(No noise)
ResNet at 32
(Noise 0.01)

0.5

1.0

Co
rre

la
tio

n

Training
Region

Generalization
Region

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time

106

107

108

M
SE

 p
ow

er
sp

ec
tra

l e
rro

r

Figure A.3: (CT-3D) Per-variable (Density, Velocity X, Velocity Y, Velocity Z and Pressure) MSE
error, correlation, and power spectrum error as a function of time, for rollouts of learned models
trained on high-resolution Athena data (1283) downsampled to 323, and for Athena ran at lower
spatial resolutions (643, 323).

0

2π

4π

Gr
ou

nd
 T

ru
th

Sp
at

ia
l

co
or

di
na

te

Example 0 Example 1 Example 2 Example 3

0 50 100 150
Time

0

2π

4π

Pr
ed

iti
on

Sp
at

ia
l

co
or

di
na

te

0 50 100 150
Time

0 50 100 150
Time

0 50 100 150
Time

Figure A.4: KS-1D model generalizing to larger spatial domains (trained on domains 2π wide).

0

2π

Ex
am

pl
e

0
 G

ro
un

d
Tr

ut
h

0

2π

Pr
ed

.

0

2π

Ex
am

pl
e

1
 G

ro
un

d
Tr

ut
h

0

2π

Pr
ed

.

0

2π

Ex
am

pl
e

2
 G

ro
un

d
Tr

ut
h

0

2π

Pr
ed

.

0

2π

Ex
am

pl
e

3
 G

ro
un

d
Tr

ut
h

0 200 400 600 800
Time

0

2π

Pr
ed

.

Figure A.5: KS-1D model generalizing to longer trajectories (trained on trajectories with 181 simu-
lation time units).

12

	Introduction
	Experimental Turbulent Domains
	Model
	Results
	Conclusions
	Appendix
	Additional dataset details
	1D Kuramoto-Sivashinsky (KS) Equation
	2D Incompressible Decaying Turbulence
	3D Compressible Decaying Turbulence
	3D Compressible Radiative Cooling Mixing Layer Dynamics

	Additional model details
	Additional training details
	Additional results

