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ABSTRACT

In this work we propose a deep neural network based surrogate model for a
plasma shadowgraph - a technique for visualization of perturbations in a trans-
parent medium. We are substituting the numerical code by a computationally
cheaper projection based surrogate model that is able to approximate the electric
fields at a given time without computing all preceding electric fields as required
by numerical methods. This means that the projection based surrogate model al-
lows to recover the solution of the governing 3D partial differential equation, 3D
wave equation, at any point of a given compute domain and configuration without
the need to run a full simulation. This model has shown a good quality of recon-
struction in a problem of interpolation of data within a narrow range of simulation
parameters and can be used for input data of large size.

1 INTRODUCTION

Simulations of physical processes are required in theory development and give better understanding
of complex dynamics that are involved into phenomena. The more complicate system is considered
the more compounded is the model of it and higher requirements to the computational power appear.
For simplification of such models there are used surrogate models - models, that are created to study
only certain aspects of processes that an original model represents precisely but in the same time
other dynamics are excluded or have not expected behavior. Surrogate models can reduce time
consumption of a research with an acceptable loss in accuracy of results.

Plasma shadowgraph is one of diagnostic techniques that provides a visualization of perturbations
in a transparent medium as such phenomena are not visible by human eyes. This technique is based
on refraction of probe rays when they are distributing through a medium, focused and specifically
filtered in order to represent differently refracted rays by light and dark zones(Traldi et al., 2018)).

Application of a plasma shadowgraph to some phenomena in plasma such as for example laser wake-
field acceleration(Albert et al.| 2014) can be not trivial due to intense interaction between particles
inside plasma and the micron scale of fluctuations. For a correct analysis of the experimental data
we need high quality simulations of these processes.

Simulation of a plasma shadowgraph consists of two steps. At first we need to approximate the
solution of Maxwell’s equations and then we can calculate propagation of light in free space from
Fourier optics. The model that is proposed in this paper is supposed to approximate the solution on
the first step of the shadowgraph simulation, for simplification of the problem, we consider only the
electric field component.

The main contribution of this work is a data-driven reduced-order model for approximation of the
numerical simulation of large 3D computational domains. The neural network is approximating the
solution for a simplified version of Maxwell’s equations in a context of the electric field propagation
problem, that can be described by the following equation:
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where E is the electric field, u and e are permeability and permittivity of a medium.

The model is capable of reconstructing new simulations of the electric field for different parameters
within a range limited by parameter values of existed simulations. Finally, we will be analysing the
applicability of our approach for interpolation as well as extrapolation in parameter space compared
to ground-truth data.

2 RELATED WORKS

Artificial neural network based models are widely applied in the field of radiophysics and in par-
ticular for approximation of solution for Maxwell’s equations. Thus, for example physics informed
neural networks, introduced in (Raissi et al., 2017) were applied in (Fang & Zhanl 2020) for ap-
proximation of solution of the frequency domain Maxwell’s equation in the context of metamaterial
design and for approximation of time-domain electromagnetic simulations derived by Maxwell’s
equations in (Zhang et al.l [2020). Another example of a surrogate model for Maxwell’s equations
is presented in the paper (Bartlett, 2018)), as opposed to previous two works, there authors use not
only fully connected architecture but also convolutional architecture to archive better quality solu-
tion approximation of Maxwell’s equations over an arbitrary dielectric permittivity. In these works
models approximate a solution directly based on the input parameters. Such method is intuitive but
with increasing of outputs’ size one can encounter a problem of high resource consumption. An-
other kind of methods, projection based models that reduce dimensionality of the original model
and approximate solution in a reduced space. In (Noakoasteen et al., [2020) authors proposed an
autoencoder based architecture for approximation of Maxwell’s equations solution. A convolutional
autoencoder decreases dimensionality of input data and evolution in time is recurrently computed by
a modified LSTM(Hochreiter & Schmidhuber;, |1997) network on the reduced space. Another work
that proposes an autoencoder based solver for Maxwell’s equations is (Cheng et al., 2020) for the
problem of wave propagation.

The model proposed in our work solves the problem of approximation using architecture of an
autoencoder in order to reduce number of operations at approximation itself and in the same time
replaces recurrent computations of each next time point by a direct mapping of parameters to a
solution approximation in a reduced space.

3 METHOD

The model consists of two parts, the first one, autoencoder, reduces dimensionality of input data and
transforms it back to the original size and the second one, projection approximator, approximates
the solution in a reduced space. The structure of the autoencoder is adopted from (Kim et al.l|2019),
where it is used as a part of a reduced order model for fluid dynamics simulations. The encoder
consists of convolutional downsamling layers, each is preceded by a block of convolutional layers
and an additive skip connection between them, the decoder is structured in the same way but layers
are arranged in a reverse order. In addition, the last downsampling layer is followed by one more
block of convolutional layers and afterwards there is applied a linear layer to reduce vector size
to the desirable size of the latent space. In this work we define number of downsampling layers
by the formula proposed in (Kim et al, 2019) depending on a size of input, number of preceded
convolutional layers is set to 4. Each layer in the network is followed by the activation function
LeakyReLU(Maas}, 2013) with leak of 0.2.

The projection approximator can be seen as multi-layer perceptron architecture consisting of 4 fully
connected layers: the input layer of size k£ + 1, 2 hidden layers and the output layer of latent size [,
each hidden layer is followed by sin(x) activation function that captures the functional relationship
of adjacent latent codes.

Compression of 3D simulation data: let us denote the encoder by R : Rh Xwxd — Rl, where
h, w, d - height, width and depth of an input volume ) at time point ¢, [ is a size of its latent
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representation. Then the decoder is denoted by G : Rl 5 R XWX d Thig autoencoder is

trained by minimizing the supervised reconstruction loss L ¢ of an original volume E(t) and a

D _ GirE®)):

Py
reconstructed one E

Lro(ED) = [ED) —ED)),

Projection approximation in Latent Space: the projection approximator is learning the mapping

F.RET1 Rl, where k is a number of simulation parameters and one additional parameter is a
time point at which a solution is to be approximated. The objective function of this network is the
supervised approximation error,

Lr(RED),p,t) = ||RED) = F(p,1)]|2

where p is a vector of simulation parameters and ¢ some point in time. Pretrained autoencoder and
projection approximator allows us to reconstruct the solution of our system for different points as of

E[()f')edicted = G(F(P, t))

4 RESULTS

For validation of the proposed model there are used simulations of beam propagation. Each simu-
lation is an approximation of electric field propagation through a cell with a sphere in the middle
that is defined by a radius r and a refractive index n, calculated by finite-difference time-domain
method(Kane Yee, [1966) using a library Meep(Oskooi et al., [2010). An example of such simula-
tion is shown in figure|l] Surfaces of a cube represent middle slices of the cell from corresponding
planes.

The cell has physical size of 12m in each dimension with P o8 o
perfectly matched layer of 2pum for the absorption at the — «f T P ﬂoa ﬂO-ZS
boundary, proposed in (Berenger, |1994). Beam propa- z z (%03
gates il} direction of axes Z, time points are given in unjts, L g i:g:i L / Fj:
one unit corresponds to 104.17us. All parameters of sim- " -0 X Y 100
ulations are given in supplementary material (3). 10 o8 =30 e
For training of the autoencoder such simulations were oe 12

used with the following ranges of varying parameters: ra- SN || floa S~ || fos

dius in [2.0um, 4.0pum] with a step of 0.5um and refrac- 1z (o2 2z s

tive index in [1.1,1.7] with a step of 0.1. The same data = ' |- X b
in the reduced space is used for training of the projection v e = s
approximator. Permutations of these values bring to 35 eo os . 2

simulations that were used as training data for the autoen-
coder, one simulation approximates the electric field at
each time point in range [0.0, 10.0] with a step of 0.03125
time units, in total each simulation consists of 321 files where each file is a 3D array of size
193 x 193 x 193 and takes 55Mb of memory and ca. 18Gb for a one full simulation.

Figure 1: Example of simulation

4.1 TRAINING OF MODEL

The networks were trained sequentially since the projection approximator requires a large number of
epochs for convergence which would be computationally unfeasible in an end-to-end setting. There-
fore, the autoencoder was trained first allowing us to precomputed the latent codes of all volumes of
our training. The precomputed latent codes are then used for further training of the projection ap-
proximator. Parameters of networks were optimized by Adam optimizer(Kingma & Ba, |2017) with
learning rate of 0.0001 over 160 iterations (autoencoder) and 0.001 over 18400 iterations (projection
approximator). Training of autoencoder was performed on 28 GPUs NVIDIA V100 for 29 A and of
projection approximator on 8 GPUs for 6 h.
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4.2 ANALYSIS OF LATENT CODE

The analysis of temporal evolution of certain latent codes in the reduced space can give us better
understanding and interpretation of the compressed representation.

Figure [2] illustrates two series: one series shows the time
evolution of a single voxel of our original input volume 3
while the other series shows the time evolution of a certain =~ .. ™
latent dimension of the very same dataset. o1

—— latent

There we see that the wave pattern with its period is pre- <= o
served over encoding, then we can conclude that the field 00 1020 30 A0 SOt 0 o0 %0 w0
is compressed with maintaining certain physical depen-

dencies from the original volume while parameters of sim- Figure 2: Evolution of components in
ulation correspond to the range of values in latent repre- the original and reduced spaces
sentation.

4.3 GENERATION OF SIMULATIONS

The interpolation of simulations between known parameter values was performed successfully for
the described model.

Figures[3] @] show several examples of reconstruction. The model has shown an ability to reconstruct
propagation of the field for all considered time points in the training set maintaining the structure of
the field including refraction of the field in the location of a sphere as well as a distance on which
the field is propagated until a certain point in time.
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Figure 3: The reconstructed volumes clearly resemble the field data of the 3D wave equation.

Examples from figure [3 relate to time points 3.0, 6.0 and 9.0 respectively for a simulation with the
same radius and refractive index. Examples from figure ] show that the model is able to recognize
different input radii of a sphere as well as different refractive indices respectively. Table[I] provides
average reconstruction errors over each simulation.

Table 1: Reconstruction error for interpolation ~The model can handle parameter values beyond the
considered ranges (extrapolation) for training only

within a small distance as new simulations contain

Parametersr,n L, error features that did not appear in the training set.

2.25um, 1.65 0.01639 The time consumption for approximation of a sin-
3.25um, 1.25 0.01595 gle 3D volume is reduced by a factor of four
3.25um, 1.65 0.01813 compared to the computational time of conven-
3.75um, 1.65 0.01823 tional numerical method: the FTDT method im-

plemented in Meep takes ca. 0.8 s per time point
while for the developed model it takes ca. 0.18 s. An even larger improvement in runtime can be
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Figure 4: Examples of reconstruction

gained as the projection approximator network not only allows us to recover certain subsequent time
points but also enables us to fast-forward to any given time point of compute domain in 0.18 s.

5 CONCLUSIONS

The fast reconstruction of experimentally accessible diagnostics is a crucial task for understand-
ing very complex systems such as Laser plasma accelerators. A general strategy for solving the
involved ill-posed inverse problems requires the optimisation of numerical simulations which is
computationally very demanding. We are tackling that issue by a projection-based surrogate model
that successfully approximates the governing 3D field propagation with stable behavior for inter-
polation in parameter space. Interestingly, we found that the autoencoder part of our architecture
preserves time-dependent physical properties while also encoding information about the parameters
describing the system. The surrogate model promises significant acceleration compared to numeri-
cal methods by allowing direct access to the solutions of the governing equation at any point in time
without the need of time-stepping schemes. Additionally, the surrogate model promises an speedup
by factor of four comparing to the conventional FTDT method even for simple time-stepping.
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SUPPLEMENTARY MATERIALS

PARAMETERS OF SIMULATIONS USED FOR TRAINING DATA

The cell has physical size of 12um in each dimension and resolution of simulation is
16 pixels per pm. Boundary condition is a perfectly matched layer for the absorption with width
of 2um on each side of the cell. The source of the current starts to distribute the field in direction
of axes Z from the starting point with coordinates (—4, 0, 0) w.r.t. the center of the cell(coordinates
of center are (0,0, 0)), wavelength of the source is 1.0um, size of the source is (0,8, 8), i.e. a flat
source in space between absorbing layers. Center of a sphere is located in the middle of the cell -
(0,0,0), with defined radius and refractive index of material. Time points are given in units, one
unit corresponds to 104.17s.

ADDITIONAL PLOTS TO LATENT SPACE ANALYSIS
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Figure 5: Evolution of a single component from simulations with different parameters in the reduced
space

ADDITIONAL RESULTS
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Figure 6: Reconstruction of simulation: r = 3.25um, n = 1.65
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Figure 7: Examples of reconstruction: interpolation
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Figure 8: Examples of reconstruction: extrapolation of radius
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Figure 9: Examples of reconstruction: extrapolation of refractive index

0.60
0.40
0.20

0.00



Published as a workshop paper at ICLR 2021 SimDL Workshop

Table 2: Reconstruction error for extrapolation

Parameters: »,n (L) error

4.25pm, 1.65 0.01639
4.50pm, 1.65 0.01826
4.75um, 1.65 0.01813
3.25um, 1.75 0.01877
3.25um, 1.90 0.02161
3.25um, 2.00 0.02421
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