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ABSTRACT

In this work we propose a hybrid solver to solve partial differential equation
(PDE)s in the latent space. The solver uses an iterative inferencing strategy com-
bined with solution initialization to improve generalization of PDE solutions. The
solver is tested on an engineering case and the results show that it can generalize
well to several PDE conditions.

1 INTRODUCTION

Simulations are important in engineering applications to explore the underlying physics. But, they
can be computationally expensive because they involve numerical methods to solve partial differ-
ential equations (PDEs) for various conditions associated with the PDE, such as geometry of com-
putational domain, type of boundary conditions (BC), external source terms etc. Researchers have
explored the idea of coupling machine learning with PDEs for several decades (Crutchfield & Mc-
Namara, 1987; Kevrekidis et al., 2003). Recently, there is a tremendous focus on improving the
predictive capability and generalizability of ML methods by infusing physics, either during training
or prediction. A substantial portion of research has focused on introducing physics-based constraints
in neural networks through the computation of PDE derivatives (Raissi et al., 2019; Raissi & Kar-
niadakis, 2018; Rao et al., 2020; Ranade et al., 2020; Gao et al., 2020; Wu et al., 2018; Qian et al.,
2020; Xue et al., 2020). More recently, there is a huge effort on training neural networks within
frameworks of differentiable PDE solvers. These approaches use differentiable solvers to learn and
control PDE solutions as well as the dynamics of the system (Amos & Kolter, 2017; Um et al.,
2020; de Avila Belbute-Peres et al., 2018; Toussaint et al., 2018; Wang et al., 2020; Holl et al., 2020;
Portwood et al., 2019; Bar-Sinai et al., 2019; Zhuang et al., 2020; Kochkov et al., 2021).

There is a growing need for improving generalizability of ML techniques to a wider range of PDE
parameters. The existing ML approaches that learn from PDE conditions, such as geometry, BCs and
source terms have to handle several challenges. Firstly, the PDE conditions can be high dimensional
and sparse, impacting learning and generalizability. Secondly, the inference procedure is static and
there are limited opportunities to alter the trajectory of PDE solutions. Finally, the space of physical
solutions is very large.

In this paper, we propose a hybrid solver to learning PDE solutions and address the outlined chal-
lenges. We use lower dimensional representations to tackle the issues of high dimensionality and
sparsity of PDE conditions and solutions. Further, the inferencing methodology uses an iterative
procedure to solve the PDE in a lower dimensional latent space with fixed point iterations. Latent
space learning has been explored in several works, (Wiewel et al., 2020; Maulik et al., 2020; Kim
et al., 2019; Murata et al., 2020; Fukami et al., 2020b; Champion et al., 2019; Fukami et al., 2020a;
He & Pathak, 2020), but our approach to solve PDEs is different and novel. The iterative procedure
at inference enables us to alter the solution trajectories using existing PDE solvers. This is useful in
ML based techniques to ensure solver robustness, generalizability and accuracy. The hybrid solver
combines solution initialization using existing coarse grid PDE solvers with this iterative inferencing
procedure and is demonstrated on a practical engineering application.
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Figure 1: Autoencoders for PDE conditions and solution

2 SOLUTION METHODOLOGY

2.1 LATENT SPACE REPRESENTATION

Fig. 1 shows the neural network architectures used to determine the compressed latent space vec-
tors of the various PDE conditions, such as geometry of computational domain, BCs and source
term distributions, and PDE solutions (u1 and u2). The geometry of the computational domain is
represented using a binarized level set representation (Osher & Sethian, 1988). On the other hand,
boundary conditions and source terms already have spatio-temporal distributions. The PDE con-
ditions, as well as the PDE solutions are compressed into their lower dimensional latent vectors,
ηg, ηh, ηb, η , using CNN encoder-decoder type networks. The loss functions used to constrain the
Autoencoder networks of PDE conditions are purely statistical. Conversely, the PDE solution Au-
toencoders are augmented by including PDE based loss constraints, similar to Ranade et al. (2020).
The PDE constraints are computed using the discretization schemes, available in the Ansys suite of
software. Additionally, since the PDE solutions are dependent on other PDE conditions, the solution
Autoencoders are also conditioned upon the latent vectors of the PDE conditions.

2.2 HYBRID LATENT SPACE SOLVER METHODOLOGY

Figure 2: Hybrid solver: Iterative inferencing strategy

Fig. 2 shows the hybrid latent space solver methodology proposed in this work for using the Au-
toencoder networks to infer at unknown and unseen conditions. The iterative procedure based on
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fixed point iterations and is motivated from our previous work, (Ranade et al., 2020). The different
steps involved in the solution procedure are outlined below.

1. Latent vectors, ηg , ηh and ηb, are computed for a new computational domain geometry,
boundary condition and source term distribution using the encoder networks.

2. The initial solution of PDE is computed using an existing PDE solver on a very coarse grid.
These solutions are interpolated on the fine grid and encoded to their latent vector form, η.

3. The initial solution latent vector, η combined with ηg , ηh and ηb is passed through the
decoder to generate solution fields, u1, u2.

4. Solution fields are compressed to a new solution latent vector, η̂, using the the encoder.

5. Steps 3 and 4 are repeated with the new solution latent vector, η̂ until ||η − η̂||2 < 1e−6.

6. At convergence, the PDE solutions are decoded using the most recent η̂.

The hybrid latent space solver described above has two main implications. Firstly, the iterative
procedure used for inferencing allows initialization of solutions using existing PDE solvers and
moreover provides an opportunity to intervene the solution process and alter the solution trajectory
using PDE solvers. Secondly, the solution procedure is conditioned by richer, lower dimensional
representations of PDE conditions in the form of latent vectors, thus enhancing the generalizability.

3 RESULTS AND DISCUSSIONS

Figure 3: Natural convection of electronic chip

The hybrid solver is demonstrated for a 3-D,
steady-state electronic cooling case with natural
convection. There are 5 solution variables, 3 com-
ponents of velocity, pressure and temperature. The
geometry of the computational domain may be ob-
served in Fig. 3. The domain consists of a chip-
mold assembly held by a PCB and the entire ge-
ometry is placed inside a fluid domain. The chip is
subjected to heat sources with random spatial dis-
tributions due to uncertainty in electrical heating.
Fig. 6 in Appendix A shows an example of the
8 different distributions of heat sources. From a
physics standpoint, natural convection results in a
two-way coupling between temperature and velocity. The heat source specified results in a tempera-
ture increase, which generates fluid velocity because of buoyancy effects and in turn cools the chip.
At steady state there is sufficient velocity generation to cancel out the heat generation. The main
challenges in this case are to capture the complicated physics resulting from the two-way coupling
and to generalize to different spatial distributions of heat sources.

3.1 DATA GENERATION AND TRAINING

The Autoencoder for heat source distribution is trained with random spatial distributions generated
using a Gaussian mixture model, where the number of Gaussians are varied from 1 to 20 for ran-
domized mean and variance. The Autoencoder is set up to achieve a compression ratio of around
12. The PDE solution Autoencoder is trained with 200 solution generated using Ansys Fluent fluid
flow simulation software on a computational mesh with 1283 elements for random heat sources. A
compression ratio of 64 is achieved. The normalized reconstruction mean squared error for unseen
test samples is to the order of 1e−6 for all the solution variables as well as the heat source.

3.2 COMPARISONS WITH ANSYS FLUENT

The hybrid solver is compared with Ansys Fluent solution for two heat source distributions, which
are generated randomly and thus, never seen by the networks. The initial solution is computed
at a mesh resolution of 16 elements in each spatial direction in Ansys Fluent for 200 steady-state
iterations.
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3.2.1 COMPUTATION TIME

Ansys Fluent takes an average of 200 minutes on a single CPU to obtain a converged solution on
1283 mesh. On the other hand, the hybrid solver converges in 50 seconds on average, including the
time it takes to generate the coarse grid solution. Thus, the hybrid solver results in a 200x speedup
over Ansys Fluent in generating solutions on fine girds. The averages are calculated over runs on
100 cases with different heat source distributions.

3.2.2 CONTOUR & LINE PLOTS

Fig. 4 and Fig. 7 in Appendix A compare the solution contours on the X-Y plane for the two
test cases. The hybrid solution agrees well with respect to the Ansys Fluent solutions with small
mean squared errors. Although not shown here, the performance is similar for a variety of random
distributions of heat source, including the examples shown in Figure 6 in the Appendix A. The line
plots in Fig. 5 and Fig. 8 in Appendix A are plotted along the Y direction through chip center. It
can be observed that the overall trends as well as the peak quantities agree well for both velocity
and temperature in both test cases. The contour and line plots show that the hybrid latent space
solver captures the two-way coupled physics accurately and more importantly, the methodology
generalizes well to a variety of heat source distributions.

Figure 4: Comparisons of velocity and temperature between hybrid solver solution and Ansys Fluent
solution for test case 1. The contours are plotted in X-Y plane perpendicular to the chip. The velocity
contour represents the entire domain (X∈(-0.1525m to 0.1525m), Y∈(-0.1525m, 0.1525m)), while
the temperature contour zooms on the chip (X∈(-0.03m, 0.03m), Y∈(-0.03m, 0.03m).

Figure 5: Comparisons of velocity and temperature between hybrid solver solution and Ansys Fluent
solution for test case 1. The line plots are plotted along Y direction at (X, Z)∈(0.0m, 0.0m). The
velocity line plot represents the entire domain (Y∈(-0.1525m, 0.1525m)), while the temperature line
plot zooms on the chip (Y∈(-0.03m, 0.03m).
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4 CONCLUSION AND FUTURE WORK

In this work we have proposed a hybrid solver that combines latent space learning with solution
initialization to improve generalization of PDE solutions. The results shows that the methodology
is computationally fast, accurate and generalizable. In its current form, the proposed methodology
has several limitations. Most notably, the approach is restricted to structured domains with fixed
resolutions with relatively simpler computational domain geometries. In future, we would like to
extend this to solve on unstructured meshes. Furthermore, the latent space iterative strategy will be
integrated with an actual PDE solver to alter solution trajectories and improve convergence.
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A APPENDIX

Figure 6: Example of randomness in spatial distribution of heat source terms

Figure 7: Comparisons of velocity and temperature between hybrid solver solution and Ansys Fluent
solution for test case 2. The contours are plotted in X-Y plane perpendicular to the chip. The velocity
contour represents the entire domain (X=(-0.1525m to 0.1525m), Y∈(-0.1525m, 0.1525m)), while
the temperature contour zooms on the chip (X∈(-0.03m, 0.03m), Y=(-0.03m, 0.03m).

Figure 8: Comparisons of velocity and temperature between hybrid solver solution and Ansys Fluent
solution for test case 2. The line plots are plotted along Y direction at (X, Z)∈0.0m, 0.0m). The
velocity line plot represents the entire domain (Y∈(-0.1525m, 0.1525m)), while the temperature line
plot zooms on the chip (Y=(-0.03m, 0.03m).
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