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ABSTRACT

This paper presents an approach to improve the forecast of computational fluid
dynamics (CFD) simulations of urban air pollution using deep learning, and
most specifically adversarial training. This adversarial approach aims to reduce
the divergence of the forecasts from the underlying physical model. Our two-
step method integrates a Principal Components Analysis (PCA) based adversarial
autoencoder (PC-AAE) with adversarial Long short-term memory (LSTM) net-
works. Once the reduced-order model (ROM) of the CFD solution is obtained via
PCA, an adversarial autoencoder is used on the principal components time series.
Subsequentially, a Long Short-Term Memory network (LSTM) is adversarially
trained on the latent space produced by the PC-AAE to make forecasts. Once
trained, the adversarially trained LSTM outperforms a LSTM trained in a classi-
cal way. The study area is in South London, including three-dimensional velocity
vectors in a busy traffic junction.

1 INTRODUCTION

Data-driven approaches can be seen as attractive solutions to produce reduced-order models (ROMs)
of Computational Fluid Dynamics (CFD) simulations. Moreover, forecasts produced by ROMs are
obtained at a fraction of the cost of the original CFD model solution when used together with a ROM.
Recurrent neural networks (RNN) have been used to model and predict temporal dependencies be-
tween inputs and outputs of ROMs. Non-intrusive ROMs and RNNs have been used together in pre-
vious studies, e.g. (Quilodrán Casas, 2018; Quilodrán-Casas et al., 2021; Reddy et al., 2019) where
the surrogate forecast systems can easily reproduce a time-step in the future accurately. However,
when the predicted output is used as an input for the prediction of the subsequent time sequence, the
results can detach quickly from the underlying physical model solution when encountering out-of-
distribution data.

∗Corresponding author
†Code available from https://github.com/c-quilo/adversarial-AE-LSTM/
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Our framework relies on adversarial training to improve the longevity of the surrogate forecasts.
Goodfellow et al. (2014) introduced the idea of adversarial training and adversarial losses which can
also be applied to supervised scenarios and have advanced the state-of-the-art in many fields over
the past years (Dong & Yang, 2019; Wang et al., 2019). Additionally, robustness may be achieved
by detecting and rejecting adversarial examples by using adversarial training (Shafahi et al., 2019;
Meng & Chen, 2017). Data-driven modelling of nonlinear fluid flows incorporating adversarial
networks have been successfully being studied previously (Cheng et al., 2020; Xie et al., 2018).

This extended abstract applies PC-based adversarial autoencoder (Makhzani et al., 2015) and adver-
sarial training to a LSTM network, based on a ROM (Quilodrán Casas et al., 2020; Phillips et al.,
2020) of an urban air pollution simulation in an unstructured mesh. The motivation of using adver-
sarial autoencoders relies in the ability of the adversarial training to match the aggregated posterior
of the encoder with an arbitrary prior distribution. This process aids the LSTM to be trained in the
matched latent space to avoid producing out-of-distribution forecast samples. The robustness added
by the adversarial training allows us to reduce the divergence of the forecast prediction over time
and better compression from full-space to latent space.

2 METHODS

Figure 1: Workflow. Network A: PC-based adversarial autoencoder. Network B: Adversarial LSTM.
Solid lines input within the same network, dashed lines input to another network.

2.1 PRINCIPAL COMPONENTS ANALYSIS

As described by Lever et al. (2017), PCA is an unsupervised learning method that simplifies high-
dimensional data by transforming it into fewer dimensions. Let x = {xt}t=1,...,n with x ∈ <n×m,
with n < m, denotes the matrix of the model vectors at each time step. The PCA consists in
decomposing this dataset as x = PΠ + x̄ where P ∈ <n×n are the principal components of x;
Π ∈ <n×m are the Empirical Orthogonal Functions; and x̄ is the mean vector of the model. The
dimension reduction of the system comes from truncating P at the first τ PCs as xτ = PτΠτ + x̄,
with Pτ ∈ <n×τ and Πτ ∈ <τ×m.

2.2 PC-BASED ADVERSARIAL AUTOENCODER

Once the PCs are obtained, they are utilised to train an adversarial autoencoder (AAE). The func-
tional of our PC-based adversarial autoencoder (PC-AAE) is defined as:

fPC−AAE : Ptk → P̃tk (1)
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Figure 2: Mean absolute error in ms−1. Top: fPC−AAE and reconstruction xτ with τ =
{4, 8, 16, 32} principal components. Bottom: Ensemble of forecast errors with fClassic LSTM

(blue) and fALSTM (red) from different starting points from t = 200 to t = 250 using 8 dimensions
in the latent space. The solid line is the mean and the shaded area is one standard deviation.

where Ptk are the scaled principal components time series between -1 and 1 at time-level k. The
autoencoder consists of an encoder Q and a decoder P , both mirrored fully-connected networks,
where P̃tk = P(Q(Ptk)).

Let q(z|P) and p(P̃|z) be the encoding and decoding distributions, respectively. As suggested by
Makhzani et al. (2015), we use a Gaussian posterior and assume that q(z|P) is a Gaussian distri-
bution, where its mean and variance are predicted by the encoder P: z ∼ N (µ(P), σ(P)). This
is achieved by adding two dense layers of means µ and log σ, (see Figure 1) to the final layer of
the encoder Q, and return z as a vector of samples. To ensure that z ∼ q(z) = N (µ, σ2), the
aggregated posterior, we use the reparameterisation trick described by Kingma & Welling (2013)
for backpropagation through the network z = µ + σ � ε, where ε is an auxiliary noise variable
ε ∼ N (0, I).

The adversarial training of PC-AAE includes a discriminator DA to distinguish between the real
samples, given by an arbitrary prior p(z) ∼ N (0, I) and q(z). Therefore, the adversarial autoen-
coder is regularised by matching p(z) to q(z). The P are fed to the discriminator as real sequences
(ground truth). Let, DA(α, β) represent the discriminator function with an input α and a target label
β such that, for α = ẑ ∼ p(z), β = 1 and for α = z ∼ q(z), β = 0 . The training of DA is based
on the minimisation of the binary cross-entropy loss (Lbce), using the Nesterov Adam optimizer
(Nadam) (Dozat, 2016). The adversarial losses Ladv for DA and fPC−AAE are then defined as:

LadvDA (P) = Lbceẑ∼p(z)(D
A(ẑ), 1)) + Lbcez∼q(z)(D

A(z), 0)) (2)

LadvfPC−AAE (P) = Lbcez∼q(z)(D
A(z), 1)) + Lmse(P̃,P) (3)

where Lmse is the mean squared error (mse) between P̃ and P.

2.3 ADVERSARIALLY LONG SHORT-TERM MEMORY NETWORK

Once the latent space z is obtained, it can be used to train a LSTM (Hochreiter & Schmidhuber,
1997) to make predictions. In this paper, an adversarial LSTM (ALSTM) network takes N previous
time-levels of ztk−N

, . . . , ztk as input and predicts an approximation of ztk+1
named z̃tk+1

. The
functional of ALSTM is defined as:
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Figure 3: Comparison of forecasted velocity in ms−1 (magnitude) fields by fClassic LSTM and
fALSTM and the absolute error with respect to the ground truth. This is a 80 time-step forecast
starting from t = 200. This is a horizontal slice normal to the Z-axis 10 m above ground.

fALSTM : ztk−N
, . . . , ztk → z̃tk+1

(4)

Our methodology proposes to add adversarial training to the LSTM network to further improve the
forecasts. Similar to the adversarial autoencoder described in 2.2, the adversarial training of the
LSTM network G includes a mirrored LSTM discriminator DB (see Figure 1). The LSTM network
G is designed to predict ∆z̃tk+1

= G(ztk−N
, . . . , ztk), with ∆z̃tk = z̃tk+1

− ztk . Similar to DA,
DB takes ∆ztk = ztk+1

− ztk as a positive sample, and ∆z̃tk as a negative sample. The training of
DB is based on the binary cross-entropy loss, with Nadam, as follows:

LadvDB (∆z) = Lbce(DB(∆z, 1)) + Lbce(DB(∆z̃, 0)) (5)

LadvfALSTM (∆z) = Lbce(DB(∆z̃, 1)) + Lmse(∆z̃,∆z) (6)

Thus, the prediction of the next time-level in the latent space z̃tk+1
comes from z̃tk+1

= ∆z̃tk +ztk .
Once both networks are trained, the prediction of the next time-level in the physical space x̃tk+1

is
given by x̃tk+1

= P(z̃tk+1
) + x̄.

2.4 DOMAIN

The computational fluid dynamics (CFD) simulations were carried out using Fluidity (Davies et al.,
2011). The 3D case is a realistic case including 14 buildings representing a real urban area located
near Elephant and Castle, South London, UK. The 3D case (720m × 676m × 250m) is composed
of an unstructured mesh including m = 100, 040 nodes per dimension and n = 1000 time-steps

A log-profile velocity (representing the wind profile of the atmospheric boundary layer) is used in
the 3D case. The building facades and bottom surface have no-slip boundary conditions. Whilst,
top and sides of the domain have a free-slip boundary condition. A more detailed description can be
found in Arcucci et al. (2019).

3 RESULTS AND DISCUSSION

A PCA was applied to a 3-dimensional velocity field (ms−1). The full-rank PCs were used as input
for the AAE and divided in 4 different experiments named LSτ and compared to the corresponding
reconstruction xτ with τ = {4, 8, 16, 32} PCs. The results of the mean absolute error using the
different dimension reduction approaches are shown in Figure 2. The AAE outperforms a simple
truncation of the PCs. Additionally, the solution is robust and shows similar results regarding how
many dimensions are chosen in the latent space of the bottleneck layer of the AAE. Therefore,
the following forecast results are based on a dimension reduction using 8 dimensions in the latent
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space of the AAE, which is a compression of 5 orders of magnitude. The chosen architectures,
hyperparameters and training options are shown in Appendix A.

Figure 2 presents the error from an ensemble of forecasts, of velocities in X, Y, Z, starting from
different time-steps. The solid line represents the mean of the error ensemble and the shaded area
is the standard deviation. The forecasts are created by using previous time-steps from data and
producing a forecast which is subsequently used as an input for the prediction of the next time-
step. The forecast experiments are named Fτ . After 100 iterations, it is very clear that fALSTM
outperforms a LSTM with the same architecture without adversarial training, named fClassic LSTM .
The forecasts are 4 orders of magnitude faster than the CFD simulation.

Figure 3 shows the comparison of forecasted magnitude velocity (in ms−1) fields of fALSTM , with
8 dimensions in the latent space, and fClassic LSTM , with 8 PCs, from t = 200. The snapshots
clearly show that after 80 time-levels of forecasting, fClassic LSTM diverges quickly from the un-
derlying model state, while fALSTM preserve more underlying physics. Furthermore, fALSTM
is able to recreate eddies accurately learnt from the underlying physics model (red circle in Figure
3). This approach outperforms (Quilodrán Casas et al., 2020) in terms of data compression and
(Quilodrán-Casas et al., 2021) in terms of forecast length.

4 CONCLUSIONS

This paper presented the advantages of using adversarial training to improve the forecast or a CFD
simulation of urban air pollution. The PC-based adversarial autoencoder architecture is robust and
its dimension-reduction outperforms a simple truncation of PCs. Furthermore, it is shown that ap-
plying adversarial training to a LSTM outperforms a LSTM trained in a classical way. This is very
important when accurate near real-time predictions are needed and not enough data is available.
It can be observed that adversarially trained LSTM does not diverge greatly from the data it has
learned, given the constraint of the discriminator network. The replacement of the CFD solution by
these models will speed up the forecast process towards a real-time solution. And, the application
of adversarial training could potentially produce more physically realistic flows. Furthermore, this
framework is data-agnostic and could be applied to different CFD models where enough data is
available.
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A APPENDIX

Table 1: Architectures of the different networks used in this study for the adversarial autoencoders
and the adversarial LSTMs. The encoder Q, the decoder P and the discriminator DA are fully-
connected layers. In the forecasts experiments Generator G and Discriminator DB are LSTM net-
works.

Experiments AE Enc Q Dec P Disc DA Experiments ALSTM Gen G Disc DB
LS32 1000 32 32 F32 32 32

64 64 1 64 64
32 1000 32 1

LS16 1000 16 16 F16 16 16
64 32 1 64 64
32 64 16 1
16 1000

LS8 1000 8 8 F8 8 8
64 16 1 64 64
32 32 8 1
16 64
8 1000

LS4 1000 4 4 F4 4 4
64 8 1 64 64
32 16 4 1
16 32
8 64
4 1000

Batch Normalisation in-between layers Batch Normalisation before final layer
Leaky ReLU with a slope of 0.3 Dropout 0.5

Time-lag = 5
Optimizer: Adam with Nesterov momentum with Learning rate = 10−3, β1 = 0.9, β2 = 0.999
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