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ABSTRACT

In the industrial interior design process, professional designers plan the size and
position of furniture in a room to achieve a satisfactory design for selling. In this
paper, we explore the interior graphics scenes design task as a Markov decision
process (MDP), which is solved by deep reinforcement learning. The goal is to
produce an accurate layout for the furniture in the indoor graphics scenes simula-
tion. In particular, we first formulate the furniture layout task as a MDP problem
by defining the state, action, and reward function. We then design the simulated
environment and deploy a reinforcement learning agent that interacts with the en-
vironment to learn the optimal layout for the MDP. We conduct our experiments
on a large-scale real-world interior layout dataset that contains industrial designs
from professional designers. Our numerical results demonstrate that the proposed
model yields higher-quality layouts as compared with the state-of-art model.

1 INTRODUCTION

People spend plenty of time indoors such as the bedroom, living room, office, and gym. Function,
beauty, cost, and comfort are the keys to the redecoration of indoor scenes. Many online virtual
interior tools are developed to help people design indoor spaces in the graphics simulation. Machine
learning researchers make use of the virtual tools to train data-hungry models for the auto layout
(Dai et al., 2018; Gordon et al., 2018), including a variety of generative models (Fisher et al., 2012;
Li et al., 2019b).

Reinforcement learning (RL; Sutton & Barto (2018)) consists of an agent interacting with the en-
vironment, in order to learn an optimal policy by trial and error for the Markov decision process
(MDP; Puterman (2014)). The past decade has witnessed the tremendous success of deep rein-
forcement learning in the fields of gaming, robotics and recommendation systems (Gibney, 2016;
Schrittwieser et al., 2020; Silver et al., 2017). Researchers have proposed many useful and practical
algorithms such as DQN (Mnih et al., 2013) that learns an optimal policy for discrete action space,
DDPG (Lillicrap et al., 2015) and PPO (Schulman et al., 2017) that train an agent for continuous ac-
tion space, and A3C (Mnih et al., 2016) designed for a large-scale computer cluster. These proposed
algorithms solve stumbling blocks in the application of deep RL in the real world.

The models proposed in previous work (e.g., Fisher et al. (2012); Li et al. (2019b); Qi et al. (2018);
Wang et al. (2018)) for furniture layout only produce approximate size of the furniture, which is not
practical for industry use as illustrated in Figure 1. Moreover, these prior work neglect the fact that
the industrial interior design process in the simulated graphics scenes is indeed a sequential decision-
making process, where professional designers need to make multiple decisions for furniture layout
by trial and error.

Motivated by the above challenges, we formulate the furniture layout task as a MDP problem by
defining the state, action, and reward function. We then design a simulated environment and deploy
a RL agent to learn the optimal layout for the MDP. Our work is related to data-hungry methods
for synthesizing indoor graphics scenes simulations through the layout of furniture. Early work in
the scene modeling implement kernels and graph walks to retrieve objects from a database (Choi
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Figure 1: Examples of layouts produced by the state-of-the-art models (Wang et al., 2019). These
layouts are for bedroom and tatami room. The ground truth layout in the simulator and the real-time
renders can be found in the first row. The layouts produced by the state-of-art models are shown
in the second and third rows. It can be observed that the state-of-art model produces inaccurate
position and size of the furniture.

Figure 2: Simulation environment for the layout of furniture in the indoor scenes.

et al., 2013; Dasgupta et al., 2016). The graphical models are employed to model the compatibility
between furniture and input sketches of scenes (Xu et al., 2013). Besides, an image-based CNN
network is proposed to encoded top-down views of input scenes (Wang et al., 2018). A variational
auto-encoder is applied to learn similar simulations (Zhang et al., 2020; Li et al., 2019a; Jyothi
et al., 2019b). Furthermore, the family for the simulation of indoor graphic scenes in the form of
tree-structured scene graphs is studied (Li et al., 2019b; Wang et al., 2018; 2019). However, this
family of models produces inaccurate size and position for the furniture layout.

We highlight our two main contributions. First, we formulate the interior graphics scenes design
task as a Markov decision process problem. To the best of our knowledge, this is the first time
that the task is studied from a sequential decision-making perspective. Secondly, we develop an
indoor graphics scenes simulator and use deep reinforcement learning technique to solve the MDP
in the learning of the simulated graphic scenes. The developed simulator and codes are available at
https://github.com/CODE-SUBMIT/simulator1.

2 PROBLEM FORMULATION

We formulate the planning of furniture layout in the simulation of graphics indoor scenes as a
Markov decision process (MDP) augmented with a goal state G that we would like an agent to
learn. We define this MDP as a tuple (S,G,A, T, γ), in which S is the set of states, G is the goal,
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Figure 3: Given the sizes and positions of the walls, windows, doors and furniture in a real room, the
developed simulator transfers the real indoor scenes to simulated graphics indoor scenes. Different
components are in different colors in the simulation.

A is the set of actions, T is the transition probability function in which T (s, a, s
′
) is the probabil-

ity of transitioning to state s
′ ∈ S when action a ∈ A is taken in state s ∈ S, Rt is the reward

function at timestamp t, and γ is the discount rate γ ∈ [0, 1). At the beginning of each episode in
a MDP, the solution to a MDP is a control policy π : S,G → A that maximizes the value function
Vπ(s, g) := Eπ[

∑∞
t=0 γ

tRt|s0 = s, g = G] for given initial state s0 and goal g.

In this paper, we define the states S = (Sw, Swin, Sd, Sf) where Sw consists of the geometrical
position p and the size l of the wall. Here p is the location for the center of the wall, and the
size l consists of the width and height of the wall. Swin, Sd and Sf are defined similarly for the
window, door and furniture. The goal state G describes the correct position p and direction d of the
furniture. The action set A is discrete (left, right, up or down) and it specifies the direction of the
furniture should move towards in the indoor scenes. The reward function is designed to encourage
the furniture to move towards the correct position. It is defined as the following:

R := θ IoU(ftarget, fstate)

where θ is a positive constant, ftarget and fstate represent the ground truth and the current layouts for
the furniture in the indoor scenes. IoU computes the intersection over union between fstate and ftarget.
The state, action, and reward are illustrated in Figure 2.

3 SIMULATION ENVIRONMENT

Given the sizes and positions of the walls, windows, doors and furniture in a real room, we develop
a simulator to transfer the real indoor scenes to simulated graphics indoor scenes as illustrated in
Figure 3. The RL environment is a simulator E where (s′, R) = E(s, a), a ∈ A is the action from
the agent in the current state s ∈ S, s′ ∈ S is the next state and R is the reward associated with
the action a. In the next state s′, the geometrical position and size of walls, doors, and windows are
not changed, and only the geometrical position of the furniture is updated according to the action.
Recall that the action space is discrete, and the center of the furniture can move left, right, up and
down in each timestamp. The simulator E drops the action if furniture moves out of the room,
and the furniture will stay in the same place. As the action space is discrete, we adapt the DQN
algorithm (Mnih et al., 2013) for the RL agent in the simulation. The agent network contains three
convolution layers with 8, 16, and 32 hidden features and 2 fully connected layers with 512 and 4
hidden features. We train the agent using 9 episodes where each episode the agent is initialized at
random states in the indoor simulation environment.

4 EXPERIMENTS

We discuss the qualitative and quantitative results in this section. In our numerical experiments, four
main types of indoor rooms including the bedroom, bathroom, study room and kitchen are evaluated.

We compare our proposed model with the state-of-art models including the PlanIT (Wang et al.,
2019) and the LayouGAN (Li et al., 2019a). Note that we do not compare with layoutVAE (Jyothi
et al., 2019a) and NDN (Lee et al., 2020) since they generates outputs in a conditional manner. For
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Figure 4: Given a bathroom with random furniture positions, the trained RL agent is able to produce
a good layout for the bathroom graphics scenes. The first row represents the the ground truth layout
for a bathroom in the simulation and its corresponding render. The second row represents the bath-
room with random furniture positions. The third row represents the final layouts produced by the
proposed method. The fourth row represents the corresponding layout renders.

Table 1: IoU scores for various models.
Room PlanIT LayoutGAN Ours

Bathroom 0.623± 0.008 0.651± 0.010 0.961± 0.014
Bedroom 0.647± 0.009 0.648± 0.017 0.952± 0.026

Study 0.619± 0.006 0.662± 0.014 0.957± 0.018
Kitchen 0.637± 0.006 0.639± 0.012 0.948± 0.049

each room, we test the performance of the proposed model in the environment with 2, 000 random
starting points. We train on 5, 000 samples for each type of rooms and test on 1, 000 samples for the
corresponding type of rooms. We use the intersection over union (IoU) to measure of the intersection
between the predicted layout and the ground truth layout. The comparison for different models is
shown in Table 4.

We also conduct a two-alternative forced-choice (2AFC) perceptual study to compare the images
from generated scenes with the corresponding scenes from the sold industrial solutions. The gener-
ated scenes are generated from our models, PlanIT (Wang et al., 2019) and LayouGAN (Li et al.,
2019a), respectively. Ten professional interior designers were recruited as the participants. The
scores are shown in Table 2, and the examples generated by our proposed method are shown in
Figure 4. It can be concluded that our proposed approach outperforms the state-of-art models.

Table 2: Percentage (± standard error) of 2AFC perceptual study for various models where the real
sold solutions are judged more plausible than the generated scenes.

Room PlanIT LayoutGAN Ours
Bathroom 79.61± 4.12 78.23± 6.17 61.08± 2.71
Bedroom 75.29± 3.89 79.15± 4.93 69.35± 2.83

Study 77.42± 5.92 82.03± 4.52 62.74± 5.72
Kitchen 78.13± 6.92 83.17± 5.98 64.51± 2.79
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5 DISCUSSION

In this paper, we tackle the interior graphics scenes design problem by formulating it as a sequential
decision-making problem. We further solve the problem using a deep reinforcement learning agent
that learns to produce high quality layout. It is worthwhile to extend our work and consider planning
for multiple furniture layouts or learning in 3D space.
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