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ABSTRACT

The potential generalization of generative models beyond their initial training data
is a crucial question in many physics applications. Specifically, we ask the ques-
tion whether generated samples add statistical precision beyond the training sam-
ple. For a simple toy model we show that such an amplification over the training
statistics is indeed possible. We further show that ensemble methods can enhance
generative performanc and measure their impact through a gain in amplification
factor.

1 INTRODUCTION

Research in particle physics relies on high-fidelity simulations of fundamental processes for experi-
ment design and statistical inference. Using a factorized Monte Carlo approach, they cover physical
processes spanning nearly 20 orders of magnitude in length scales. Already now, these simulations
form a major computational bottleneck. Over the coming years, the high-luminosity run of the
Large Hadron Collider (LHC) will produce a 25-fold increase in data and fundamentally challenge
our simulation tools. Generative machine learning models offer a way to both, speed up and improve
the precision of the simulation.

There exists a landscape of generative models, including generative adversarial networks
(GANs) (Goodfellow et al., 2014; Creswell et al., 2018), variational autoencoders (Kingma &
Welling, 2014; 2019), and variations of normalizing flows (Rezende & Mohamed, 2015; Kobyzev
et al., 2020). They can be applied to particle physics simulation, starting with phase space integra-
tion (Klimek & Perelstein, 2018; Bendavid, 2017) and phase space sampling (Bothmann et al., 2020;
Gao et al., 2020b;a) including amplitude regression (Bishara & Montull, 2019; Badger & Bullock,
2020) and NN-parton showers (Bothmann & Debbio, 2019; de Oliveira et al., 2017; Monk, 2018;
Andreassen et al., 2019), all the way to detector simulations (Paganini et al., 2018a;b; Musella
& Pandolfi, 2018; Erdmann et al., 2018b; 2019; ATLAS Collaboration, 2018; 2019; Belayneh
et al., 2020; Buhmann et al., 2020). Alternatively, events can be generated with all-in-one NN-
generators (Otten et al., 2019; Hashemi et al., 2019; Di Sipio et al., 2020; Butter et al., 2019a;
Alanazi et al., 2020; Howard et al., 2021), including event subtraction (Butter et al., 2019b), event
unweighting Stienen & Verheyen (2021); Backes et al. (2020). In addition, generative models can
improve searches for physics beyond the Standard Model (Lin et al., 2019) and searches for general
anomalies (Nachman & Shih, 2020; Knapp et al., 2020). Finally, conditional GANs (Datta et al.,
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Figure 1: Camel back function as a 1D test case. We show the true distribution (black), a histogram
with 100 sample points (blue), a fit to the samples data (green), a high-statistics GAN sample (or-
ange), and a Ensemble-GAN sample (purple). Ten quantiles include 10% of the truth integral each.

2018; Bellagente et al., 2020b) or flow networks (Bellagente et al., 2020a) can invert or unfold
Monte Carlo simulations.

All of these applications of generative networks fall, roughly, into two categories, (i) generative net-
works accelerating or augmenting Monte Carlo simulations or (ii) generative networks offering new
analysis opportunities. Especially the applications of the first kind raise the fundamental question
of amplification, or: How many more events can we sensibly GAN before we are limited by the
statistics of the training sample?

A seemingly straightforward answer to this question is as many examples as were used for training,
because the network does not add any physics knowledge (Matchev & Shyamsundar, 2020). How-
ever, a key property of neural networks used in particle physics is their powerful interpolation in
sparse and high-dimensional spaces. It lead to the success of the NNPDF parton densities (Del Deb-
bio et al., 2005) as the first mainstream application of machine learning to particle physics theory.
This interpolation provides GANs with information beyond the statistical limitations of the training
data.

Formally, neural networks go beyond a naive interpolation in that their architectures define basic
properties of the functions it parameterizes. For example, some kind of smoothness criterion com-
bined with a typical resolution automatically adds information to discrete training data. An extreme
baseline which we will use in this submission is the case where the true density distribution is
known in terms of a few unknown parameters. With this information it is always better to fit those
parameters and compute statistics with the functional form than to estimate the statistics directly
from the data. In the machine learning literature this kind of question is known as data amplifica-
tion (Hao et al., 2019), but not extensively discussed. An interesting application is computer games,
where the network traffic limits the available information while a simulation software still generates
realistic images or videos. This practical question leads to more formal question of sampling cor-
rectors (Canonne et al., 2015). Alternatively, it can be linked to a classification problem to derive
scaling laws for networks fooling a given hypothesis test (Hao et al., 2019; Axelrod et al., 2019).

In this submission we will study an extremely simple model, inspired by typical particle theory
applications. If we know the smooth truth distribution, we can bin our space to define quantiles —
intervals containing equal probability mass — and compute the χ2-values for sampled and GANned
approximations. Our example will be a camel back function because it is similar to multi-modal
smooth distributions common in HEP. Compared to previous work on this problem, we also show
how further improvements can be achieved by ensembles of GANs. For a more in depth discussion
and additional investigation of higher dimensional data see Butter et al. (2020).
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Figure 2: Quantile error for the 1D camel back function for sampling (blue), fit (green), GAN
(orange), and Ensemble-GAN (purple). Left to right we show results for 10, 20, and 50 quantiles.

2 PROBLEM

We use a one-dimensional camel back, made out of two normalized Gaussians Nµ,σ(x) with mean
µ and width σ as our reference distribution:

P (x) =
N−4,1(x) +N4,1(x)

2
. (1)

We show this function in Fig. 1, together with a histogrammed data set of 100 points. As a bench-
mark, we define a 5-parameter maximum-likelihood fit, where we assume that we know the func-
tional form and determine the two means, the two widths and the relative height of the Gaussians in
Eq. equation 1. We perform this fit using the IMINUIT (Dembinski et al., 2020) and PROBFIT (Ong-
mongkolkul et al., 2018) PYTHON packages. The correctly assumed functional form is much more
than we can encode in a generative network, so the network will not outperform the precision of this
fit. On the other hand, it is an interesting and relevant question how close a generative network can
come to such a parameterized fit.

To quantify the agreement of all descriptions with the true distribution, we divide our phase space
x ∈ [−8, 8] into 10, 20, or 50 quantiles. The case with 10 quantiles is illustrated in Fig.1. We can
then evaluate the quality of our approximation to the truth by computing the average quantile error

MSE =
1

Nquant

Nquant∑
j=1

(
pj −

1

Nquant

)2

, (2)

where pj is the estimated probability in each of theNquant quantiles.In Fig. 2 the blue horizontal lines
show this measure for histograms with 100 to 1000 sampled points and the fit to 100 points. For
the 100-point sample, we construct an error band by evaluating 50 statistically independent samples
and computing their standard deviation. For the fit, we do the same, i.e. fit the same 50 independent
samples and compute the standard deviation for the fit output. This uncertainty should be equivalent
to the one-sigma range of the five fitted parameters if we consider all correlations.

The first observation in Fig. 2 is that the agreement between the sample or the fit with the truth
generally improves with more quantiles, which is simply a property of our quantile MSE error.
Second, the fit’s precision corresponds to roughly 300 hypothetical data points for 10 quantiles, 500
hypothetical data points for 20 quantiles, and close to 1000 hypothetical data points for 50 quantiles.
Therefore, for high resolution and an extremely sparsely populated 1D-phase space, the assumed
functional value for the fit gives this description the same statistical power as a ten times bigger
dataset with no knowledge of the functional form. If we define the amplification factor as the ratio
between asymptotic performance and training events, the amplification factor of our fit comes out
around ten. The question is, how much is a GAN with its very basic assumptions worth, for instance,
in comparison to this fit?
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3 MODEL

Our generative model is a standard GAN implemented using PYTORCH (Paszke et al., 2019). Both,
the generator and discriminator are fully connected networks with dropout. The input noise to the
generator consists of 1000 numbers sampled uniformly form [−1, 1].

To aid the discriminator in learning the underlying distribution we use a mini-batch discrimination
method inspired by DeepSets (Zaheer et al., 2017; Komiske et al., 2019). At every evaluation step
the discriminator input is made up of a data point x ∈ R1 and the corresponding full batchB ∈ R1,n,
with batch size n. The setup then calculates the pointwise difference B − x ∈ R1,n. This is passed
to an embedding function Φ : R1,n → Rm,n, with embedding size m. The result is then aggregate
along the batch direction using a function F : Rm,n → Rm. The input to the actual FCN network
consist of a combination of x and F (Φ(B − x)).

The discriminator and generator are trained for 10,000 epochs using the ADAM optimizer (Kingma
& Ba, 2014) with an exponential learning rate decay. The discriminator training is improved using
a gradient penalty (Roth et al., 2017), which significantly stabilizes the training process. To further
prevent the network from overfitting to the small dataset, we modify each real data point with linear
noise drawn from [−0.1, 0.1]. This noise is re-sampled at every evaluation step.

To further alleviate training instabilities, we introduce an additional setup we term Ensemble-GAN.
For this, we train N independent GANs on each 100 data point training sample as described above.
We then sample 1/N of the total GANed samples from each of these models during the generation
process. In our setup we choose N = 10.

4 RESULTS

Returning to Fig. 2, the orange and purple curves show the performance of the GAN and Ensemble-
GAN setup compared to the sample and the 5-parameter fit. The uncertainties for both are again
derived via 50 independent training repetitions. We compute the quantile error as a function of the
number of GANned events and see how it saturates. This saturation is where GANning more events
would not add more information to a given sample. Depending on the number of quantiles or the
resolution, the information saturates between 1000 and 100,000 GANned events, compared with
100 training events. This result shows that it does make sense to generate more events than the
training sample size.

On the other hand, a GANned event does not carry the same amount of information as a sampled
event. The asymptotic value of the GAN quantile error should be compared to the expected quantile
error for an increased sample, and we find that the 10,000 GANned events are worth between 150
and 600 sampled events, depending on the applied resolution. The ensemble method pushes this
number of corresponding sampled events to 190 and 750, indicating that it indeed improves the
setup’s convergence behaviour. Altogether, our GAN produces an amplification factor above seven
for a resolution corresponding to 50 quantiles. A noteworthy feature of the GAN is that it follows
the fit result with a slight degradation, roughly corresponding to the quoted fit uncertainty. In that
sense, the analogy between a fit and a flexible NN-representation makes sense, and the GAN comes
shockingly close to the highly constrained fit. This is despite the GAN being significantly more
versatile and complex and therefore more prone to over-fitting than the parameter fit. Finally, just
like a parameterized fit, training a GAN encodes statistical uncertainties in the training sample into
systematic uncertainties in the network.

5 OUTLOOK

A crucial question for applications of generative models to particle physics simulations is how many
events we can generate through the fast network before we exhaust the physics information encoded
in the training sample. Generally, a neural network adds information or physics knowledge through
the class of functions it represents. To answer this question for GANs, we split the phase space of
a simple test function into quantiles and use the combined quantile MSE to compare sample, GAN,
and a fit benchmark.
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We find that it makes sense to GAN significantly more events than we have in the training sample,
but those individual events carry less information than a training sample event. As GAN sampling
can be much more computationally efficient than ab initio simulations, this triggers a net statisti-
cal benefit. We define an amplification factor as the number of hypothetical training events with
the same information content as asymptotically many GANned events. This amplification factor
strongly depends on the number of quantiles or the phase space resolution. While we can never beat
a low-parameter fit, the GAN comes surprisingly close, and its amplification factor scales with the
fit’s amplification factor.

While our focus is on GANs, our observed amplification is also relevant for other neural networks
applications. Specifically, it also applies to networks increasing the data quality through refin-
ing (Erdmann et al., 2018a; Bellagente et al., 2020b) or reweighting (Andreassen & Nachman, 2020;
Andreassen et al., 2020). It will be interesting to see how the improvement scales with the amount
of training data for these approaches.
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