
Published as a workshop paper at ICLR 2021 SimDL Workshop

ONE-SHOT LEARNING FOR SOLUTION OPERATORS OF
PARTIAL DIFFERENTIAL EQUATIONS

Lu Lu
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
lu lu@mit.edu

Haiyang He, Priya Kasimbeg, Rishikesh Ranade & Jay Pathak
Ansys Inc.
San Jose, CA, USA

ABSTRACT

Discovering governing equations of a physical system, represented by partial dif-
ferential equations (PDEs), from data is a central challenge in a variety of areas
of science and engineering. Current methods require either some prior knowledge
(e.g., candidate PDE terms) to discover the PDE form, or a large dataset to learn a
surrogate model of the PDE solution operator. Here, we propose the first learning
method that only needs one PDE solution, i.e., one-shot learning. We first decom-
pose the entire computational domain into small domains, where we learn a local
solution operator, and then find the coupled solution via a fixed-point iteration. We
demonstrate the effectiveness of our method on different PDEs, and our method
exhibits a strong generalization property.

1 INTRODUCTION

Discovering governing equations of a physical system from data is a central challenge in a variety
of areas of science and engineering. These governing equations are usually represented by partial
differential equations (PDEs). For the first scenario, where we know all the terms of the PDE and
only need to infer unknown coefficients from data, many effective methods have been proposed. For
example, we can enforce physics-based constraints to train neural networks that learn the underlying
physics (Pang et al., 2019; Zhang et al., 2019; Chen et al., 2020a; Yazdani et al., 2020; Rao et al.,
2020; Wu et al., 2018; Qian et al., 2020; Lu et al., 2021b). In the second scenario, we do not know
all the PDE terms, but we have a prior knowledge of all possible candidate terms, several approaches
have also developed recently (Brunton et al., 2016; Rudy et al., 2017; Chen et al., 2020b).

In a general setup, discovering PDEs only from data without any prior knowledge is much more
difficult. To address this challenge, instead of discovering the PDE in an explicit form, in most
practical cases, it is sufficient to have a surrogate model of the PDE solution operator that can
predict PDE solutions repeatedly for different conditions (e.g., initial conditions). Very recently,
several approaches have been developed to learn PDE solution operators by using neural networks
such as DeepONet (Lu et al., 2021a) and Fourier neural operator (Li et al., 2020). However, these
approaches require large amounts of data to train the networks.

In this work, we propose a novel approach to learn PDE solution operators from only one data
point, i.e., one-shot learning. To our knowledge, the use of one-shot learning in this space is very
limited. Wang et al. (2019) and Fang et al. (2017) used few shot learning to learn PDEs and applied
it to face recognition. Our method leverages the locality of PDEs and use neural networks to learn
the system governed by PDEs at a small computational domain. Then for a new PDE condition, a
fixed point iterative algorithm is proposed to couple all local domains to find the PDE solution. Our
method exhibits strong generalization properties. Moreover, the one-shot local learning approach
trains very fast and extends to multi-dimensional, linear and non-linear PDEs. In this paper, we
describe, in detail, the one-shot local learning approach and demonstrate on different PDEs for a
range of conditions.

1

Published as a workshop paper at ICLR 2021 SimDL Workshop

2 METHODS

We first introduce the problem setup of learning solution operators of partial differential equations
(PDEs) and then present our one-shot learning method.

2.1 LEARNING SOLUTION OPERATORS OF PDES

We consider a physical system governed by a PDE defined on a spatio-temporal domain Ω ⊂ Rd:

F [u(x); f(x)] = 0, x = (x1, x2, . . . , xd) ∈ Ω

with suitable initial and boundary conditions. u(x) is the solution of the PDE and f(x) is a forcing
term. The solution u depends on f , and thus we define the solution operator as G : f(x) 7→ u(x).
For nonlinear PDEs, G is a nonlinear operator.

In many problems, the PDE of a physical system is unknown or computationally expensive to solve,
and instead, sparse data representing the physical system is available. Specifically, we consider
a dataset T = {(fi, ui)}|T |i=1, and (fi, ui) is the i-th data point, where ui = G(fi) is the PDE
solution for fi. Our goal is to learn G from the training dataset T , such that for a new f , we can
predict the corresponding solution u = G(f). When T is sufficiently large, then we can learn G
straightforwardly by using neural networks, whose input and output are f and u, respectively. Many
networks have been proposed in this manner such as DeepONet (Lu et al., 2021a) and Fourier neural
operator (Li et al., 2020). In this study, we consider an extreme scenario where we have only one
data point for training, i.e., one-shot learning with |T | = 1, and we let T = {(fT , uT)}. Learning
from only one data point is impossible in general, and here we consider that T is not given, and we
can select fT . In addition, instead of learning G for the entire input space, we only predict f in a
neighborhood of some f0, where we know the solution u0 = G(f0).

2.2 ONE-SHOT LEARNING BASED ON LOCALITY

To overcome the difficulty of training a machine learning model based on only one data point, we
consider the fact that derivatives and PDEs are defined locally, i.e., the same PDE is satisfied in
an arbitrary small domain inside Ω. In our method, we partition the entire domain Ω into many
small domains, i.e., a mesh of Ω. In this study, we only consider the structured equispaced grid to
demonstrate our method, but our method can be easily extended to unstructured mesh.

Figure 1: PDE in a
local domain Ω̃. A
neural network G̃ is
trained to learn the
mapping from all or
some of u(x) and f(x)

for x ∈ Ω̃ to u(x∗).

Learning the local solution operator via a neural network. To demon-
strate the idea, we consider a mesh node at the location x∗ (the red node
in Fig. 1). In order to predict the solution u(x∗), instead of consider-
ing the entire computational domain, we only consider a small domain
Ω̃ surrounding x∗ with several mesh cells. If we know the solution u
at the boundary of Ω̃ (∂Ω̃) and f within Ω̃, then u(x∗) is determined
by the PDE. Here, we use a neural network to represent this relation-
ship G̃ : {u(x) : x ∈ ∂Ω̃} ∪ {f(x) : x ∈ Ω̃} 7→ u(x∗). In ad-
dition, considering the flexibility of neural networks, we may use other
local information as network inputs. For example, we can only use the
value of f at x∗ and add more solutions inside Ω̃ as network inputs:
G̃ : {u(x) : x ∈ Ω̃ and x 6= x∗} ∪ {f(x∗)} 7→ u(x∗). The size and
shape of Ω̃ are also hyperparameters to be chosen. We will compare the
performance of several different choices of network inputs in our numeri-
cal experiments.

Because the network learns for a small local domain, by traversing the en-
tire domain Ω, we can generate many input-output pairs for training the network, which makes it
possible to learn a network from only one PDE solution. In addition, to make the network gener-
alizable to different f , the selection of fT in T is also important. In this study, we choose fT to
be uniform random between -1 and 1 on each mesh node, i.e., fT (x) is sampled from U(−1, 1).
The reason is that if fT is smooth, then the training data points in adjacent meshes become similar,
and thus the “effective” number of training data points is small, while a randomly sampled fT can

2

Published as a workshop paper at ICLR 2021 SimDL Workshop

induce a more “diverse” training dataset. The choice of a random fT is critical for the learning as
we will elaborate on this in the numerical examples.

Prediction via a fixed-point iteration. For a new f = f0 + ∆f , we cannot directly predict its
solution u using the trained network, because the network inputs also include the solution to be
predicted. Here, we propose an iterative algorithm to find the solution (Algorithm 1). Because f
is close to f0, we use u0 as the initial guess of u, and then in each iteration, we apply the trained
network on the current solution as the input to get a new solution. This algorithm can be viewed as
a fixed-point iteration. When the solution is converged, u and f are consistent with respect to the
local operator G, and thus the current u is the solution of our PDE.

Algorithm 1: Predicting the solution u = G(f) for a new f .
Initiate: u(x)← u0(x) for all x ∈ Ω
while u has not converged do

for x ∈ Ω do
û(x)← G̃(the inputs of u and f in Ω̃)

Update: u(x)← û(x) for all x ∈ Ω

3 RESULTS

In this section, we show the effectiveness of our proposed method for a few problems, and compare
the accuracy and convergence rate of different choices of the local solution operator G̃.

3.1 POISSON EQUATION

We first consider a pedagogical example of a one-dimensional Poisson equation ∆u = f(x), x ∈
[0, 1], with the zero Dirichlet boundary condition u(0) = u(1) = 0, and the solution operator is
G : f 7→ u. We consider an equispaced grid with a step size h = 0.01, and choose the simplest local
operator as G̃ : [u(xi−1), u(xi+1), f(xi)] 7→ u(xi) with xi = ih, i.e., Ω̃ only has three nodes and
we use u(xi−1), u(xi+1) and f(xi) to predict u(xi). We use a single layer linear network for G̃, and
the training dataset T only has one data point (fT ,G(fT)), where fT (xi) is sampled randomly in
U(−1, 1). One example of T is shown in Figs. 2A and B, and we use the finite difference method
(FDM) to compute the numerical solution.

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

A

f

x

-0.012

-0.008

-0.004

 0

 0 0.2 0.4 0.6 0.8 1

B

u

x

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0 0.2 0.4 0.6 0.8 1

C

u

x

Ref.
u0

10-3

10-2

10-1

 0 2 4 6 8 10

D

L
2
 r

e
la

tiv
e
 e

rr
o
r

Iterations (103)

Random f
f0

Figure 2: Learning the Poisson equation. (A and B) (A) A random fT and (B) the corresponding
solution uT used for training. (C) The initial guess of u0 has a L2 relative error of 25% compared
to the reference solution. (D) Red solid line: The L2 relative error decreases exponentially during
the iteration, when the network is trained on a random f . Blue dash line: The error is large when
the network is trained on f0.

After the network is trained, we use the iterative Algorithm 1 to predict the solution for f =
sin(2πx) + 0.05. We assume we have the solution u0 = − 1

4π2 sin(2πx) for f0 = sin(2πx), i.e.,
∆f = 0.05, and then u0 is used as the initial guess of the iteration, which has an L2 relative error of
25% compared to the reference solution (Fig. 2C). During the iteration, the error of the solution de-
creases exponentially with respect to the number of iterations (Fig. 2D red solid line), and it requires
about 6000 iterations to reach 1% error.

3

Published as a workshop paper at ICLR 2021 SimDL Workshop

We notice that the learned linear network is u(xi) = G̃(u(xi−1), u(xi+1), f(xi)) =
[u(xi−1), u(xi+1), f(xi)] · [0.5, 0.5,−5 × 10−5] + 10−9, which is the second-order finite differ-
ence scheme for the Poisson equation. However, as we will show in other examples, the network
does not learn a finite difference scheme in general, especially for nonlinear PDEs or the local do-
main Ω̃ with more nodes. To show the necessity of using a random f for training, we also use a
smooth f0 and u0 to train the network, and the error can only decrease to 15% (Fig. 2D blue dash
line). Although, both f(x) and f0(x) span from -1 to 1, the noisy f generates a diverse training set
and thus improves generalizability of the neural network.

3.2 NONLINEAR DIFFUSION-REACTION EQUATION

We consider a nonlinear diffusion-reaction equation with a source term f(x): ∂u∂t = D ∂2u
∂x2 + ku2 +

f(x), x ∈ [0, 1], t ∈ [0, 1], with zero initial and boundary conditions, where D = 0.01 is the
diffusion coefficient, and k = 0.01 is the reaction rate. The solution operator is the mapping from
f(x) to u(x, t). We use a grid with ∆x = ∆t = 0.01. To generate the training dataset, fT (x)
is randomly sampled from U(0, 1) (Fig. 5A), and the reference solution (Fig. 5B) is obtained from
finite differences with the Crank-Nicolson method.

Figure 3: Local domains Ω̃ of the diffusion-
reaction equation. (A) Domain with 4 nodes.
(B) Domain with 6 nodes.

In this example, we consider different choices
of the local domain Ω̃ and the local solution
operator G̃. For the target uji at (i∆x, j∆t),
the simplest choice of Ω̃ is {(i, j − 1), (i −
1, j), (i, j), (i+1, j)} (Fig. 3A), and then the sim-
plest choice of G̃ is G̃1 : [uj−1i , uji−1, u

j
i+1, f

j
i] 7→

uji . We also consider a larger domain of 6
nodes as shown in (Fig. 3B), and choose G̃2 :

[uj−1i−1 , u
j−1
i , uj−1i+1 , u

j
i−1, u

j
i+1, f

j
i] 7→ uji . After we train the networks G̃1 and G̃2, we predict the

solution for f in the neighborhood of f0 = 0.9 sin(2πx), and the solution u0 = G(f0) is used as
the initial guess of the iteration. Instead of using a constant ∆f , we randomly sample ∆f from
a mean-zero Gaussian random field (GRF): ∆f ∼ GP(0, k(x1, x2)), where the covariance ker-
nel k(x1, x2) = σ2 exp(−‖x1 − x2‖2/2l2) has a standard deviation σ and a correlation length l.
Examples of some random f with different σ and l are shown in Fig. 6.

Figure 4: Learning the diffusion-reaction equation. (A) L2 relative errors of G̃1 and G̃2 tested on
100 random ∆f sampled from GRF of σ = 0.1 and l = 0.1. (B) σ = 0.3. (C) σ = 1. The shaded
band is one standard deviation.

We first test G̃1 and G̃2 on 100 random ∆f sampled from a GRF with σ = 0.1 and l = 0.1. The
L2 relative error of G̃1 is more than one-order larger than the error of G̃2 (Fig. 4A). If we increse the
magnitude of ∆f to σ = 0.3 or 1, G̃2 always has better performance than G̃1 (Figs. 4B and C). We
note that when ∆f is sampled from GRF with σ = 1, f and f0 are significantly different (Fig. 6C),
but G̃2 can still achieve an L2 relative error of 0.3% in about 200 iterations, which demonstrates the
robustness and generalizability of our proposed method.

4 CONCLUSION

In this study, we propose, to the best of our knowledge, the first one-shot method to learn solution
operators from only one PDE solution. In future, we will carry out further validation of on different

4

Published as a workshop paper at ICLR 2021 SimDL Workshop

types of PDEs, extend the method to unstructured meshes, and improve Algorithm 1 for faster
convergence and better computational efficiency.

REFERENCES

S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from data by sparse
identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences,
113(15):3932–3937, 2016.

Y. Chen, L. Lu, G. E. Karniadakis, and L. Dal Negro. Physics-informed neural networks for inverse
problems in nano-optics and metamaterials. Optics Express, 28(8):11618–11633, 2020a.

Z. Chen, Y. Liu, and H. Sun. Deep learning of physical laws from scarce data. arXiv preprint
arXiv:2005.03448, 2020b.

C. Fang, Z. Zhao, P. Zhou, and Z. Lin. Feature learning via partial differential equation with appli-
cations to face recognition. Pattern Recognition, 69:14–25, 2017.

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-
kumar. Fourier neural operator for parametric partial differential equations. arXiv preprint
arXiv:2010.08895, 2020.

L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. Learning nonlinear operators via DeepONet
based on the universal approximation theorem of operators. Nature Machine Intelligence, 3(3):
218–229, 2021a.

L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis. DeepXDE: A deep learning library for solving
differential equations. SIAM Review, 63(1):208–228, 2021b.

G. Pang, L. Lu, and G. E. Karniadakis. fPINNs: Fractional physics-informed neural networks. SIAM
Journal on Scientific Computing, 41(4):A2603–A2626, 2019.

E. Qian, B. Kramer, B. Peherstorfer, and K. Willcox. Lift & learn: Physics-informed machine
learning for large-scale nonlinear dynamical systems. Physica D: Nonlinear Phenomena, 406:
132401, 2020.

C. Rao, H. Sun, and Y. Liu. Physics-informed deep learning for incompressible laminar flows.
Theoretical and Applied Mechanics Letters, 10(3):207–212, 2020.

S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz. Data-driven discovery of partial differential
equations. Science Advances, 3(4):e1602614, 2017.

H. Wang, Z. Zhao, and Y. Tang. An effective few-shot learning approach via location-dependent
partial differential equation. Knowledge and Information Systems, pp. 1–21, 2019.

J. Wu, H. Xiao, and E. Paterson. Physics-informed machine learning approach for augmenting
turbulence models: A comprehensive framework. Physical Review Fluids, 3(7):074602, 2018.

A. Yazdani, L. Lu, M. Raissi, and G. E. Karniadakis. Systems biology informed deep learning
for inferring parameters and hidden dynamics. PLoS Computational Biology, 16(11):e1007575,
2020.

D. Zhang, L. Lu, L. Guo, and G. E. Karniadakis. Quantifying total uncertainty in physics-informed
neural networks for solving forward and inverse stochastic problems. Journal of Computational
Physics, 397:108850, 2019.

A DIFFUSION-REACTION EQUATION

5

Published as a workshop paper at ICLR 2021 SimDL Workshop

Figure 5: Training data for the diffusion-reaction equation. (A) A random fT . (B) The corre-
sponding solution uT .

Figure 6: Examples of random f = f0 + ∆f with ∆f sampled from GRF of different σ and
l = 0.1. (A) σ = 0.1. (B) σ = 0.3. (C) σ = 1. The black solid line is f0.

6

	Introduction
	Methods
	Learning solution operators of PDEs
	One-shot learning based on locality

	Results
	Poisson equation
	Nonlinear diffusion-reaction equation

	Conclusion
	Diffusion-reaction equation

