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ABSTRACT

Improving the predictive capability of molecular properties in ab initio simula-
tions is essential for advanced material discovery. Despite recent progress mak-
ing use of machine learning, utilizing deep neural networks to improve quantum
chemistry modelling remains severely limited by the scarcity and heterogeneity
of appropriate experimental data. Here we show how training a neural network
to replace the exchange-correlation functional within a fully-differentiable three-
dimensional Kohn-Sham density functional theory (DFT) simulation can greatly
improve its accuracy and generalizability. Using only eight experimental data
points on diatomic molecules, our trained exchange-correlation networks provided
improved predictions of atomization energies across a collection of 104 molecules
containing new bonds and atoms that are not present in the training.

1 INTRODUCTION

Fast and accurate predictive models of atomic and molecular properties are keys in advancing novel
material discovery. With the rapid development of machine learning (ML) techniques, considerable
effort has been dedicated to accelerating simulations, enabling the efficient exploration of configu-
ration space. Much of this work focuses on end-to-end ML approaches (Gilmer et al., 2017), where
the models are trained to predict some specific molecular or material properties using tens to hun-
dreds of thousands of data points, generated via simulations (Schütt et al., 2018). Once trained,
ML models have the advantage of accurately predicting the simulation outputs much faster than the
original simulations (Smith et al., 2017). The level of accuracy achieved by ML models with respect
to the simulated data can be very high, and may even reach chemical accuracy on select systems
outside the original training dataset (Faber et al., 2017). These machine learning approaches show
great promise, but rely heavily on the availability of large datasets for training.

While there has been a concerted effort in accelerating simulations, less attention has been dedi-
cated to using machine learning to increase the accuracy of the simulation itself with respect to the
experimental data. In particular, as ML models typically rely on some underlying simulation for
the training data, the accuracy of the trained models can never exceed the simulations in terms of
accuracy. However, training ML models using experimental data is challenging as the available data
is highly heterogeneous as well as limited, making it difficult to train accurate ML models tailored
to reproduce a specific system or physical property. This limitation also poses a great challenge on
the generalization capability of ML models to systems outside the training data.

One emerging solution to this problems is to use machine learning to build models which learn the
exchange-correlation (xc) functional within the framework of Density Functional Theory (DFT)
simulations. Here, the Kohn & Sham (1965) DFT (KS-DFT) can be used to calculate various
ground-state properties of molecules and materials, where its accuracy largely depends on the qual-
ity of the employed xc functional. Works along these lines in the one-dimensional case show
promise (Snyder et al., 2012; Li et al., 2021), but are severely limited by the lack of availability
of experimental data from one-dimensional systems. Recently, Nagai et al. (2020) reported on suc-
cessfully representing the xc functional as a neural network, trained to fit 2 different properties of
3 molecules using the three-dimensional KS-DFT calculation in PySCF (Sun et al., 2018) via a
gradient-less optimization. While their results show promise in predicting various material proper-
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Figure 1: Schematics of the xc neural network and differentiable KS-DFT code. The trainable neural
network is illustrated with dark gray boxes. The solid dark lines show the forward calculation flow
while the dashed blue lines show the gradient backpropagation flow.

ties, gradient-less methods in training neural networks typically suffer from bad convergence (Mah-
eswaranathan et al., 2019) and are too computationally intensive to scale to larger and more complex
neural networks.

In this context, we present here a new machine learning approach to learn the xc functional using
heterogeneous and limited experimental data. We achieve this in a hybrid of physics and machine
learning way by incorporating a deep neural network representing the xc functional in a fully dif-
ferentiable three-dimensional KS-DFT calculation. Notably, using a xc neural network (XCNN) in
a fully differentiable KS-DFT calculation gives us a framework to train the xc functional using any
available experimental properties, however heterogeneous, which can be simulated via a standard
KS-DFT. Moreover, as the xc neural network is independent of the system (atom type, structure,
number of electrons, etc.), a well-trained XCNN should be generalizable to a wide range of systems,
including those outside the pool of training data. In this paper, we demonstrate this approach using a
dataset comprising atoms and molecules from the first few rows of the periodic table, but the results
are readily extendable to more complex structures.

2 DIFFERENTIABLE DFT

A single biggest challenge to realizing our method is writing a KS-DFT simulation in a fully dif-
ferentiable manner. This is achieved here by writing the KS-DFT code using an automatic differ-
entiation library, PyTorch (Paszke et al., 2019), and by providing separately the gradients of all
the KS-DFT components which are not available in PyTorch. The KS-DFT calculation involves
self-consistent iterations of solving the Kohn-Sham equations,

H[n](r)φi(r) = εiφi(r), (1)

n(r) =
∑
i

fi|φi(r)|2, (2)

where n(r) is the electron density as a function of a 3D coordinate (r), fi is the occupation number
of the i-th orbital (φi), εi is the Kohn-Sham orbital energy, andH[n](r) is the Hamiltonian operator,
a functional of electron density profile n and a function of the 3D coordinate. The Hamiltonian
operator consists of kinetic, external potential, Hartree potential, and xc potential operators.

The KS-DFT calculation proceeds by solving Eq. (1) with eigendecompositions and computing
Eq. (2) iteratively until convergence or self-consistency is reached. In this work, the Hamiltonian
operator H[n] is constructed using the contracted Gaussian-type basis (Pritchard et al., 2019) as
the orbital basis. The schematics of our differentiable KS-DFT code is shown in Fig. 1. Unless
specified otherwise, all calculations involved in this paper use 6-311++G(3df,3pd) basis sets (Clark
et al., 1983). More details on solving the KS equations can be found in the appendix.

Although modern automatic differentiation libraries provide many operations that enable an auto-
matic propagation of gradient calculations, there are many gradient operations that have to be im-
plemented specifically for this project. An important example is the self-consistent cycle iteration.
Previous works on differentiable quantum chemistry, such as Tamayo-Mendoza et al. (2018) and Li
et al. (2021), employed a fixed number of linear mixing iterations to achieve self-consistency, and
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let the automatic differentiation library propagate the gradient through the chain of iterations. In
contrast, we implement the gradient propagation of the self-consistency cycle using an implicit gra-
dient calculation (see appendix), allowing us to deploy a better self-consistent algorithm, achieving
faster and more robust convergence than linear mixing.

Another example is the gradient calculation of the eigendecomposition with (near-)degenerate eigen-
values. This case often produces numerical instabilities in the gradient calculation, making the gra-
dient calculation severely inaccurate. To solve this problem, we follow the calculation by Kasim
(2020) to obtain a numerically stable gradient calculation in the (near-)degenerate cases.Besides
those two examples, there are more KS-DFT parts that require specific gradient implementations.
The details of those parts can be found in the appendix.

2.1 EXCHANGE-CORRELATION NEURAL NETWORK

With the fully differentiable KS-DFT code, the xc energy represented by a deep neural network can
be trained efficiently. For this work we will test two different types of xc deep neural networks
(XCNN) based on two rungs of Jacob’s ladder – the Local Density Approximation (LDA) and the
Generalized Gradient Approximation (GGA). These xc energies can be written as:

EnnLDA[n] = αELDA(xc)[n] + β

∫
n(r)f(n, ξ) dr (3)

EnnPBE[n] = αEPBE(xc)[n] + β

∫
n(r)f(n, ξ, s) dr, (4)

where ELDA(xc) is the LDA exchange (Kohn & Sham, 1965) and correlation energy (Perdew &
Wang, 1992), and EPBE(xc) is the PBE exchange-correlation energy (Perdew et al., 1996). Here α
and β are two trainable parameters, and f(·) is the trainable neural network. The LDA and PBE
energies are calculated using Libxc (Marques et al., 2012), wrapped with PyTorch to provide the
required gradient calculations. The XCNNs take inputs of the local electron density n, the relative
spin polarization ξ = (n↑ − n↓)/n, and the normalized density gradient s = |∇n|2/(24π2n4)1/3.

2.2 DATASETS

For the XCNN training, we compiled a small dataset consisting of experimental atomization ener-
gies (AE) of diatomic molecules from the NIST CCCBDB database (Johnson III & NIST CCCBDB
Team, 2020) and calculated density profiles using a CCSD calculation (Čı́žek, 1966) as a regular-
izer (Medvedev et al., 2017). The dataset is split into 2 groups: training and validation. The training
dataset is used directly to update the parameters of the neural network via the gradient of a loss
function (see appendix for details on the loss function). After the training is finished, we selected a
model checkpoint during the training that gives the lowest loss function for the validation dataset.

The complete list of atoms and molecules used in the training and validation datasets is shown in
Table 1. We note that some atoms are only present in the validation set and not in the training set, to
obtain checkpoints that are able to generalize well to new types of atoms outside the training set.

3 RESULTS

To test the performance of the trained XCNNs, we prepared a test dataset consisting of the atomiza-
tion energies of 104 molecules from Curtiss et al. (1997) and the ionization potentials of atoms H-Ar
from NIST ASD (Kramida et al., 2020). The experimental geometric data as well as the atomization

Table 1: Atoms and molecules presented in the training and validation datasets.

Type Atomization energy Density profile
Training H2, LiH, O2, CO H, Li, Ne, H2, Li2, LiH, B2, O2, CO
Validation N2, NO, F2, HF He, Be, N, N2, F2, HF
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Table 2: Mean absolute error (MAE) in kcal/mol of the atomization energy and ionization potential
for atoms and molecules in the test dataset. The column “IP” represents the deviation in ionization
potential for atoms H-Ar. Column “AE” is the MAE of atomization energy of a collection of 104
molecules from Curtiss et al. (1997). The following 4 columns present the atomization energies
of subsets of molecules from the full 104-molecule set: “AE HC” for hydrocarbons, “AE SHC”
for substituted hydrocarbons, “AE NHC-1” for non-hydrocarbon molecules containing only first
and second row atoms, and “AE NHC-2” for non-hydrocarbon molecules containing at least one
third row atom. The bolded values are the best MAE in the respective column for each group of
approximations.

Calculation IP AE AE HC AE SHC AE NHC-1 AE NHC-2
Local Density Approximations (LDA)
LDA (Perdew & Wang, 1992) 6.9 70.4 97.0 101.1 58.8 43.7
XCNN-LDA 50.8 15.3 22.7 19.4 7.8 16.6
XCNN-LDA-IP 15.2 18.5 25.4 21.8 8.4 22.9
Generalized gradient approximations (GGA)
PBE (Perdew et al., 1996) 3.6 16.5 15.1 23.2 18.0 9.8
XCNN-PBE 10.7 7.4 5.4 8.4 6.5 8.5
XCNN-PBE-IP 4.1 8.1 6.8 9.6 6.7 8.6
Other approximations
SCAN (Sun et al., 2015) 3.7 5.2 3.8 8.2 4.0 4.6
CCSD (basis: cc-pvqz) 2.0 12.1 11.1 17.7 11.2 9.0
CCSD-T (basis: cc-pvqz) 1.3 3.5 2.2 5.6 2.5 3.5

energies for the 104 molecules were obtained from the NIST CCCBDB database. There are actu-
ally 146 molecules in Curtiss et al. (1997), however, only 104 molecules have experimental data in
CCCBDB, so we limit our dataset to those. The atomization energy test dataset contains molecules
with 2-11 atoms ranging from H-Cl, containing many bonds and atoms that do not present in the
training and validation datasets. The molecules in the test dataset are listed in the appendix.

The results of training the XCNNs using the dataset are presented in Table 2. We see that in this
case both XCNN-LDA and XCNN-PBE provide significant improvement over their bases, i.e. LDA
and PBE, respectively. In terms of average atomization energy prediction errors across the 104 test
molecules, XCNN-LDA achieves more than 4 times lower error than LDA (PW92) and XCNN-PBE
achieves more than 2 times lower error than PBE. Importantly, although the training and validation
sets contain atomization energies only for 8 diatomic molecules, both XCNNs provide improve-
ments on atomization energy predictions of the 104-molecule test dataset, which includes molecules
with up to 11 atoms.

By looking into the subsets of the atomization energy dataset, both XCNN-LDA and XCNN-PBE
also achieve better atomization energy predictions than their bases on all of the subsets. The sub-
stantial improvements seen on the hydrocarbon and substituted hydrocarbon molecules show the
generalization capability of the technique to molecules with bonds not present in neither the training
nor the validation dataset (e.g., C–H, C–C, C=C). Moreover, both XCNNs can also predict better
atomization energy on the “AE NHC-2” subset containing third-row atoms (i.e. Na-Ar) that are not
present in the training and validation datasets, showing great generalization capability of the method.

Despite these encouraging results on the atomization energies, both XCNNs lead to significantly
worse predictions of atomic ionization potentials compared with their bases. Therefore, for the
next experiment we trained the XCNN by adding ionization potential data into the training and
validation datasets, as shown in Tab. 1. The xc neural networks trained with this additional data are
called “XCNN-LDA-IP” and “XCNN-PBE-IP”. Adding ionization potential data to the training and
validation datasets improves the performance of XCNNs on the ionization potential at the cost of
slightly increasing the error on the atomization energy predictions. Although the ionization potential
predictions of XCNN-IPs do not have lower error compared to their bases, they produce considerably
better predictions on the atomization energies of the tested molecules than their bases.

Another interesting result is that even though CCSD simulation is used in the training and valida-
tion datasets, the trained XCNN-PBE can achieve considerably better predictions on atomization
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energies than CCSD. This result highlights a key advantage of our method over other ML-based
methods that rely fully on simulation data: as our method utilizes heterogeneous experimental data
in the training, it enables us to learn xc functionals that can exceed in accuracy even the simulations
used to help train them.

Although the trained XCNNs cannot make better predictions than higher level of approximations,
e.g. SCAN (Sun et al., 2015) and CCSD(T), the presented method shows that significant improve-
ment can be made within the same level of approximation. The level of accuracy can be improved
in the future work by using a higher level of approximation, such as moving to the higher rungs of
Jacob’s ladder or incorporating more global density information with neural networks in calculating
the xc energy. While perfectly viable within our framework, such investigations remain outside the
scope of the current paper.

4 CONCLUSION

We presented a novel approach to train machine-learned xc functionals within the framework of
fully-differential Kohn-Sham DFT using experimental data. Our xc neural networks, trained on a
few atoms and diatomic molecules, are able to improve the prediction of atomization and ionization
energies across a set of 104 molecules not present in the training dataset, including larger molecules
containing new types of bonds and atoms. We have limited our study to a minimal training dataset
and to a relatively small neural network, but our results are readily extendable to substantially larger
systems, bigger experimental datasets, additional heterogeneous physics quantities, and to the use
of more sophisticated neural networks. This demonstration of experimental-data-driven xc func-
tional learning, embedded within a differentiable DFT simulator, shows great promise to advance
computational material discovery.
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A KS-DFT CALCULATION

The Hamiltonian operator in Eq. (1) is given in atomic units as H[n](r) = −∇2/2 + v(r) +
vH [n](r) + vxc[n](r) with −∇2/2 representing the kinetic operator, v(r) the external potential
operator including ionic Coulomb potentials, vH [n](r) the Hartree potential operator, and vxc[n](r)
the xc potential operator. The xc potential operator is defined as the functional derivative of the xc
energy with respect to the density, i.e. vxc[n](r) = δExc[n]/δn(r), which can be calculated using
an automatic differentiation library.

To discretize the Hamiltonian operator, a contracted Gaussian basis set is chosen as the basis of
the orbitals, bj(r) for j = {1...nb} where nb is the number of basis elements. As the basis set is
non-orthogonal, Eq. (1) becomes the Roothaan (1951) equation,

F[n]pi = εiSpi, (5)

where pi is the basis coefficient for the i-th orbital, S is the overlap matrix with elements
Src =

∫
br(r)b

∗
c(r)dr, and F[n] is the Fock matrix as a functional of the electron density pro-

file, n, with elements Frc =
∫
br(r)H[n](r)b∗c(r)dr. Equation (5) can be solved by performing an

eigendecomposition of the Fock matrix to obtain the orbitals from the electron density profile.

The ionic Coulomb potential, Hartree potential, and the kinetic energy operators in the Fock matrix
are constructed by calculating the Gaussian integrals with libcint (Sun, 2015). The contribution from
the xc potential operator in the Fock matrix is constructed by integrating it with the basis using SG-
3 integration grid (Dasgupta & Herbert, 2017) with Becke (1988) scheme to combine multi-atomic
grids.
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B GRADIENT OF KS-DFT COMPONENTS

B.1 SELF-CONSISTENT ITERATION CYCLE

The self-consistent iteration cycle in a KS-DFT calculation can be written mathematically as

y = f(y, θ), (6)

where y are the parameters to be found self-consistently, and f(·) is the function that needs to be
satisfied which may depend additionally on other parameters, here denoted by θ. The self-consistent
iteration takes the parameters θ and an initial guess y0, and produces the self-consistent parameters
y that satisfy the equation above. In our case, the self-consistent parameters are the elements of the
Fock matrix.

The gradient of a loss function L, with respect to the parameters θ, given the gradient with respect
to the self-consistent parameters ∂L/∂y, can be expressed as

∂L
∂θ

= −∂L
∂y

(
I− ∂f

∂y

)−1(
∂f

∂θ

)
, (7)

where I is the identity matrix. The inverse-matrix vector calculation in the equation above is per-
formed using the BiCGSTAB algorithm (Van der Vorst, 1992).

B.2 GAUSSIAN BASIS

The differentiable KS-DFT employs a contracted Gaussian basis. The calculation of the Gaussian
basis in 3D space is performed using libcgto, a library within PySCF (Sun et al., 2018). Libcgto
is a library that can generate code to compute a Gaussian basis of any order. As libcgto does not
provide an automatic differentiation feature, it has to be wrapped by PyTorch to enable the automatic
differentiation mode through the integrals calculated by libcgto.

A single Gaussian basis centered at r0 of order l,m, n is expressed as

glmn(r;α, c, r0) = c(x− x0)l(y − y0)m(z − z0)ne−α||r−r0||
2

, (8)

where c is the basis coefficient and α is the exponential parameter. The contracted Gaussian basis is
just a linear combination of the single Gaussian bases above.

The gradient back-propagation calculation with respect to the parameters, (c, α, and r0) can be
expressed as

∂L
∂c

=
∂L
∂glmn

∂glmn
∂c

(9)

∂L
∂α

=
∂L
∂glmn

∂glmn
∂α

(10)

∂L
∂r0

=
∂L
∂glmn

∂glmn
∂r0

, (11)

where

∂glmn
∂c

=
glmn
c

(12)

∂glmn
∂α

= −
(
g(l+2)mn + gl(m+2)n + glm(n+2)

)
(13)

∂glmn
∂r0

= −∇glmn. (14)

The parameters required for the calculations above (e.g. the gradient of the basis and higher order
bases) can be provided by libcgto.
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B.3 GAUSSIAN INTEGRALS

Constructing the Fock matrix and the overlap matrix in Roothaan’s equation requires the evaluation
of Gaussian integrals. The integrals typically involves 2-4 Gaussian bases of any order. Those
integrals are:

Sijk−lmn =

∫
gijk(r)glmn(r) dr (15)

Kijk−lmn = −1

2

∫
gijk(r)∇2glmn(r) dr (16)

Cijk−lmn =
∑
c

∫
gijk(r)

Zc
|r− rc|

glmn(r) dr (17)

Eijk−lmn−pqr−stu =

∫
gijk(r)glmn(r)

1

|r− r′|
gpqr(r

′)gstu(r
′) drdr′, (18)

where S is the overlap term, K is the kinetic term, C is the ionic Coulomb term of an ion of charge
Zc at coordinate rc, and E is the two-electron Coulomb term (i.e. the Hartree potential operator).
These integrals can be calculated efficiently by libcint (Sun, 2015).

The gradients of a loss function L with respect to the basis parameters θ = {c, α, r0} are:

∂L
∂θ

=

(
∂L
∂θ

)
S

+

(
∂L
∂θ

)
K

+

(
∂L
∂θ

)
C

+

(
∂L
∂θ

)
E

(19)(
∂L
∂θ

)
S

=
∂L
∂S

[∫
∂gijk(r)

∂θ
glmn(r) dr+

∫
gijk

∂glmn(r)

∂θ
dr

]
(20)(

∂L
∂θ

)
K

=− 1

2

∂L
∂K

[∫
∂gijk(r)

∂θ
∇2glmn(r) dr+

∫
gijk∇2 ∂glmn(r)

∂θ
dr

]
(21)(

∂L
∂θ

)
C

=
∂L
∂C

∑
c

[∫
∂gijk(r)

∂θ

Zc
|r− rc|

glmn(r) dr+

∫
gijk

Zc
|r− rc|

∂glmn(r)

∂θ
dr

]
(22)(

∂L
∂θ

)
E

=
∂L
∂E

[∫
∂gijk(r)

∂θ

glmn(r)gpqr(r
′)gstu(r

′)

|r− r′|
dr+

∫
∂glmn(r)

∂θ

gijk(r)gpqr(r
′)gstu(r

′)

|r− r′|
dr

+

∫
∂gpqr(r

′)

∂θ

gijk(r)glmn(r)gstu(r
′)

|r− r′|
dr+

∫
∂gstu(r

′)

∂θ

gijk(r)glmn(r)gpqr(r
′)

|r− r′|
dr

]
.

(23)

If the parameter θ does not belong to the basis g·, then ∂g·/∂θ is 0. Otherwise, the values of ∂g·/∂θ
for various parameters are listed in the previous subsection. For the gradient with respect to the
atomic position, rc, the expression is given by

∂L
∂rc

=
∂L
∂C

[∫
∇gijk(r)

Zc
|r− rc|

glmn(r) dr+

∫
gijk(r)

Zc
|r− rc|

∇glmn(r) dr
]
. (24)

The expression above is obtained by performing partial integration. As the derivative of the Gaussian
basis with respect to its parameters is also a Gaussian basis, the required integrals can be provided
by libcint (Sun, 2015).

B.4 EXCHANGE-CORRELATION ENERGY AND POTENTIAL

The exchange-correlation (xc) energy in our calculation is a hybrid between available xc energy
functionals (i.e. the LDA (Kohn & Sham, 1965) and PBE (Perdew et al., 1996) models) and a neural
network xc energy. The gradient back-propagation through the xc neural network is easily provided
by PyTorch. However, as we use Libxc (Marques et al., 2012) to calculate the established xc energy,
it has to be wrapped by PyTorch to provide the gradient back-propagation calculation. As Libxc
can also calculate the gradient of the energy with respect to its parameters, providing the automatic
differentiation feature by wrapping it with PyTorch is just a matter of calling the right function in
Libxc.

9
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If the PyTorch wrapper for Libxc is provided, calculating the xc potential can be done using the
automatic differentiation feature provided by PyTorch. The component of the Fock matrix from the
xc potential for the LDA spin-polarized case is

V
(LDA)
ij =

∫
φ∗i (r)v

(LDA)
s (r)φj(r) dr, (25)

where the subscript s can be ↑ or ↓ representing the spin of the electron, and v
(LDA)
s is the xc

potential,

v(LDA)
s =

∂

∂ns

∫
nε(LDA)(n↑, n↓) dr, (26)

with ε(LDA) the energy density per unit volume, per electron, provided by Libxc. The 3D spatial
integration is performed using SG-3 integration grid (Dasgupta & Herbert, 2017) with Becke (1988)
scheme to combine multi-atomic grids. The derivation with respect to ns in the equation above
can simply be calculated using the automatic differentiation feature of PyTorch wrapping the Libxc
library.

For spin-polarized GGA, the potential linear operator is (Martin, 2020)

V
(GGA)
ij =

∫
φ∗i (r)v

(GGA)
s (r)φj(r) dr (27)

vGGAs =
∂

∂ns

∫
nε(GGA)(n↑, n↓,∇n↑,∇n↓) dr +

(
∂

∂∇ns

∫
nε(GGA) dr

)
· ∇, (28)

where the derivatives with respect to ns and ∇ns can be performed by automatic differentiation,
and the last∇ term is applied to the basis which can be provided by libcgto from PySCF (Sun et al.,
2018).

B.5 (NEAR-)DEGENERATE CASE OF EIGENDECOMPOSITION

One challenge in propagating the gradient backward for some molecules is the degeneracy of eigen-
values in the eigendecomposition. The eigendecomposition of a real and symmetric matrix, A, can
be written as

Avi = λivi (29)
with λi and vi as the i-th eigenvalue and eigenvector, respectively.

In the non-degenerate case, the gradient of a loss function L with respect to each element of matrix
A can be written as

∂L
∂A

= −
∑
j

∑
i 6=j

(λi − λj)−1vivTi
∂L
∂vj

vTj . (30)

A problem arises when degeneracy appears as a term of 0−1 appears in the equation above.

To solve this problem, we follow the equation from Kasim (2020), which can be written simply as

∂L
∂A

= −
∑
j

∑
i 6=j,λi 6=λj

(λi − λj)−1vivTi
∂L
∂vj

vTj , (31)

which just removes the degenerate terms in the sum. However, the equation above is only valid as
long as the loss function does not depend on which linear combinations of the degenerate eigen-
vectors are used and the elements in matrix A depends on some parameters that always make the
matrix A real and symmetric. Otherwise, the equation above becomes invalid and the actual gradient
becomes mathematically undefined.

C NEURAL NETWORK TRAINING

C.1 DATASET

The atomization energy dataset is compiled from NIST CCCBDB (Johnson III & NIST CCCBDB
Team, 2020). CCCBDB contains the experimental data for enthalpy of atomization energy. To

10
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convert it into electronic atomization energy which can be calculated by KS-DFT calculations, the
zero-point vibration energy must be excluded from the enthalpy of atomization energy. Some di-
atomic molecules have the experimental values of the zero-point energy in CCCBDB from Irikura
(2007). For the rest of the molecules, the zero-point energy is estimated from the fundamental
vibrations of the molecules which are also available from CCCBDB.

C.2 NEURAL NETWORKS

The neural network is an ordinary feed-forward neural network with 3 hidden layers consist of 32
elements each with softplus (Nair & Hinton, 2010) activation function to have infinite differentia-
bility of the neural network. To avoid non-convergence of the self-consistent iterations during the
training, the parameters α and β are initialized to have values of 1 and 0 respectively.

The neural network takes an input of the density, n, spin polarized density, ξ = (n↑ − n↓)/n, and
normalized density gradient, s = |∇n|2/(24π2n4)1/3 (for XCNN-PBE). As the density (n) and the
normalized density gradient (s) can have values between 0 up to a very large number, these values
are renormalized by applying log(1 + x), i.e. n← log(1 + n) and s← log(1 + s).

C.3 TRAINING

The parameters of XCNN are updated based on the gradient of a loss function with respect to its
parameters. The loss function is given by a combination of two terms

L =
wae
Nae

Nae∑
i=1

(
Ê

(ae)
i − E(ae)

i

)2
+
wdp
Ndp

Ndp∑
i=1

∫
[n̂i(r)− ni(r)]2 dr, (32)

where w(·) are the weights assigned to each type of the data, N(·) are the number of entries of
each datatype in the dataset, E(ae) and E(ip) are, respectively, the predicted atomization energy
and ionization potential using XCNN and KS-DFT, n is the electron density profile predicted with
XCNN and KS-DFT. The variables with a hat, Ê(·) and n̂, are the target variables that were obtained
from experimental databases (for energies) and CCSD calculations (for electron density profiles).

The XCNN is trained using the RAdam (Liu et al., 2019) algorithm with a constant learning rate of
10−4. The weights for training of the neural networks are:

• XCNN-LDA: wae = 1340, wdp = 170.

• XCNN-PBE: wae = 1340, wdp = 5360.

D MOLECULES IN THE TEST DATASET

The 104 molecules in the test dataset, as well as the subset they belong, to are listed below.

1. LiH (Lithium Hydride): NHC-1
2. BeH (beryllium monohydride): NHC-1
3. CH (Methylidyne): HC
4. CH3 (Methyl radical): HC
5. CH4 (Methane): HC

6. NH (Imidogen): NHC-1
7. NH2 (Amino radical): NHC-1
8. NH3 (Ammonia): NHC-1

9. OH (Hydroxyl radical): NHC-1

10. H2O (Water): NHC-1
11. HF (Hydrogen fluoride): NHC-1

12. SiH2 (silicon dihydride): NHC-2
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13. SiH3 (Silyl radical): NHC-2
14. SiH4 (Silane): NHC-2
15. PH3 (Phosphine): NHC-2
16. H2S (Hydrogen sulfide): NHC-2
17. HCl (Hydrogen chloride): NHC-2
18. Li2 (Lithium diatomic): NHC-1
19. LiF (lithium fluoride): NHC-1
20. C2H2 (Acetylene): HC
21. C2H4 (Ethylene): HC
22. C2H6 (Ethane): HC
23. CN (Cyano radical): NHC-1
24. HCN (Hydrogen cyanide): NHC-1
25. CO (Carbon monoxide): NHC-1
26. HCO (Formyl radical): NHC-1
27. H2CO (Formaldehyde): NHC-1
28. CH3OH (Methyl alcohol): SHC
29. N2 (Nitrogen diatomic): NHC-1
30. N2H4 (Hydrazine): NHC-1
31. NO (Nitric oxide): NHC-1
32. O2 (Oxygen diatomic): NHC-1
33. H2O2 (Hydrogen peroxide): NHC-1
34. F2 (Fluorine diatomic): NHC-1
35. CO2 (Carbon dioxide): NHC-1
36. Na2 (Disodium): NHC-2
37. Si2 (Silicon diatomic): NHC-2
38. P2 (Phosphorus diatomic): NHC-2
39. S2 (Sulfur diatomic): NHC-2
40. Cl2 (Chlorine diatomic): NHC-2
41. NaCl (Sodium Chloride): NHC-2
42. SiO (Silicon monoxide): NHC-2
43. CS (carbon monosulfide): NHC-2
44. SO (Sulfur monoxide): NHC-2
45. ClO (Monochlorine monoxide): NHC-2
46. ClF (Chlorine monofluoride): NHC-2
47. Si2H6 (disilane): NHC-2
48. CH3Cl (Methyl chloride): SHC
49. HOCl (hypochlorous acid): NHC-2
50. SO2 (Sulfur dioxide): NHC-2
51. BF3 (Borane trifluoro-): NHC-1
52. BCl3 (Borane trichloro-): NHC-2
53. AlF3 (Aluminum trifluoride): NHC-2
54. AlCl3 (Aluminum trichloride): NHC-2
55. CF4 (Carbon tetrafluoride): NHC-1
56. CCl4 (Carbon tetrachloride): NHC-2
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57. OCS (Carbonyl sulfide): NHC-2
58. CS2 (Carbon disulfide): NHC-2
59. CF2O (Carbonic difluoride): NHC-1
60. SiF4 (Silicon tetrafluoride): NHC-2
61. SiCl4 (Silane tetrachloro-): NHC-2
62. N2O (Nitrous oxide): NHC-1
63. ClNO (Nitrosyl chloride): NHC-2
64. NF3 (Nitrogen trifluoride): NHC-1
65. O3 (Ozone): NHC-1
66. F2O (Difluorine monoxide): NHC-1
67. C2F4 (Tetrafluoroethylene): NHC-1
68. CF3CN (Acetonitrile trifluoro-): NHC-1
69. CH3CCH (propyne): HC
70. CH2CCH2 (allene): HC
71. C3H4 (cyclopropene): HC
72. C3H6 (Cyclopropane): HC
73. C3H8 (Propane): HC
74. C4H6 (Methylenecyclopropane): HC
75. C4H6 (Cyclobutene): HC
76. CH3CH(CH3)CH3 (Isobutane): HC
77. C6H6 (Benzene): HC
78. CH2F2 (Methane difluoro-): SHC
79. CHF3 (Methane trifluoro-): SHC
80. CH2Cl2 (Methylene chloride): SHC
81. CHCl3 (Chloroform): SHC
82. CH3CN (Acetonitrile): SHC
83. HCOOH (Formic acid): SHC
84. CH3CONH2 (Acetamide): SHC
85. C2H5N (Aziridine): SHC
86. C2N2 (Cyanogen): SHC
87. CH2CO (Ketene): SHC
88. C2H4O (Ethylene oxide): SHC
89. C2H2O2 (Ethanedial): SHC
90. CH3CH2OH (Ethanol): SHC
91. CH3OCH3 (Dimethyl ether): SHC
92. C2H4O (Ethylene oxide): SHC
93. CH2CHF (Ethene fluoro-): SHC
94. CH3CH2Cl (Ethyl chloride): SHC
95. CH3COF (Acetyl fluoride): SHC
96. CH3COCl (Acetyl Chloride): SHC
97. C4H4O (Furan): SHC
98. C4H5N (Pyrrole): SHC
99. H2 (Hydrogen diatomic): NHC-1

100. HS (Mercapto radical): NHC-2
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101. C2H (Ethynyl radical): HC
102. CH3O (Methoxy radical): SHC
103. CH3S (thiomethoxy): SHC
104. NO2 (Nitrogen dioxide): NHC-1
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