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ABSTRACT

In material science, recent studies have started to explore the potential of using
deep learning to improve property prediction from high-fidelity simulations, e.g,
density functional theory (DFT). However, the design spaces are sometimes too
large and intractable to sample completely. This results in a critical question that
is how to evaluate the confidence and robustness of the prediction. In this paper,
we propose an efficient approach to estimate uncertainty in deep learning using
a single forward pass and then apply it for robust prediction of the total energy
in crystal lattice structures. Our approach is built upon the deep kernel learning
(DKL) that originally introduces to leverage the expressiveness of deep neural
networks as input with a probabilistic prediction of Gaussian processes (GPs)
as output. Existing DKL methods have difficulties in the accuracy of predictive
uncertainty, training stability, and scaling to large datasets, which lead to significant
barriers in real-world applications. We propose to address these challenges by
using an inducing point approximate GP in feature space combined with spectral
normalization as a regularization. We finally demonstrate our robust performance
on an artificial example and a real-world application from materials chemistry.

1 INTRODUCTION

In the search for advanced materials for various functional applications ranging from energy storage
to catalysis, deep learning (DL) has quickly gained traction as a powerful and flexible approach. The
adoption of DL for materials design is expected to expand even further with the ongoing growth in
the availability of high-throughput density functional theory (DFT) simulation datasets and continued
advancements in DL algorithms. This research area has spurred the creation of DL models to predict
various material properties, including total energy, bandgap and etc. Unfortunately, in many cases,
the design space is very large such that we are unable to sample completely for these DL models. The
resulting under-sampling challenge can limit the training data and therefore the predictive capability
of the models (Tran et al., 2020). It is useful to have an uncertainty estimation for a DL model so that
we can evaluate the robustness and determine when we trust the prediction.

Efficient methods that estimate uncertainty in deep neural networks (DNNs) are critical for real-world
applications in science and engineering. A large body of research on this purpose is Bayesian deep
learning or Bayesian neural networks (BNNs) (MacKay, 1992; 1995; Neal, 2012) which can be used
to interpret the model parameters and robust to over-fitting problems. Even though exact inference in
the BNN framework is often tractable, a set of variational approximation methods (Murphy, 2013;
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Tzikas et al., 2008; Hoffman et al., 2013) are proposed to deal with the scalability challenges (Li &
Gal, 2017). More practically, Monte Carlo dropout (Gal & Ghahramani, 2016; 2015) can be seen as a
promising alternative way that is easy to evaluate and implement. Another important direction is the
deep ensemble methods Lakshminarayanan et al. (2016) that are proposed by combining multiple
deep models training from different initialization, and have outperformed the BNN framework
that was trained using variational inference (Ovadia et al., 2019). Some very recent methods on
deterministic uncertainty quantification (DUQ) (Van Amersfoort et al., 2020; Liu et al., 2020) use a
single forward pass and regulates the neural network mapping with a gradient penalty. DUQ methods
have scaled well to large image datasets in classification tasks.

In this work, we aim to conduct an efficient uncertainty estimation in deep learning for conducting
robust prediction of material properties using DFT simulation datasets. Our approach leverages recent
advances in deterministic uncertainty quantification framework and addresses the existing challenges
based on the following contributions:

• We combine a residual deep architecture as a feature extractor with an approximate Gaussian
process (GP) model to efficiently estimate uncertainty using a single forward pass.

• We propose to introduce inducing point GP with fuzzy c-means clustering that is used to represent
the full datasets such that we can reduce the computational complexity.

• We show the robust performance of the approach on total energy prediction in a real-world lattice
crystal structure SrTiO3 perovskite oxide from material chemistry.

2 METHOD

2.1 DEEP FEATURE EXTRACTOR WITH RESIDUAL NETWORKS

Deep kernel learning (Wilson et al., 2016a) (DKL) is a well-established approach for estimating
uncertainty in deep neural networks with a single forward pass. The overall idea of DKL is to first
extract the feature by leveraging deep neural networks and then use the feature extractor as an input
to a Gaussian process output which offers probabilistic measurement. This is achieved by the use of a
kernel that contains a deep feature extractor, which is given by

Kτ,θ(xi,xj)← K∗
τ (Ωθ(xi),Ωθ(xj)) (1)

where Ωθ is a deep neural network parameterized by θ, up to the last linear layer. K∗
τ is the base

kernel, such as Matérn or RBF kernel that is typically used in GP, and τ is the hyperparameters of the
base kernel. In practice, DKL encounters several difficulties, particularly in scaling to large datasets
because the exact inference for GP is hampered by the inversion of kernel matrix in Eq. 1, where the
time complexity scales cubically with the number of data, N . Thus, DKL is often integrated with a
sparse GP approximation (Snelson & Ghahramani, 2005; Quinonero-Candela & Rasmussen, 2005)
to mitigate the computational burden.

2.2 INDUCING POINT GP WITH SOFT CLUSTERING

An alternation method is the use of variational approximation of the exact GP. Titsias (2009) proposed
a variational formulation for sparse approximations which jointly infers the kernel parameters τ and
inducing inputs by maximizing a lower bound of the log marginal likelihood that is also known as the
evidence lower bound, which is defined as

L(X) = logP (X)−DKL(Q ‖ P ) = −
∑

Q(Y) logQ(Y) +
∑

Q(Y) logP (Y,X) (2)

where a distributionQ over unobserved variables Y targets to approximate the true posterior P (Y|X)
given data X. Maximizing the evidence lower bound minimizes the Kullback–Leibler divergence,
DKL(Q ‖ P ). Our approach is built upon this idea with a much smaller number of inducing points
ms � N to overcome the scalability issue in GP. These inducing points are placed in input feature
space to approximate the full dataset and the locations of these points are variational parameters
that can be learned by jointly training. Inducing point GP reduces the time complexity of the matrix
inversion from O(N3) to O(m2

sN).
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The number of inducing points may have a sensitive impact on the approximation of the true posterior
distribution (Wilson et al., 2016b). van Amersfoort et al. (2021) proposed to place the inducing point
in feature space using k-means clustering and demonstrated that only fewer inducing points offer
competitive accuracy in image classification tasks. However, the clustering in regression task is often
more challenging than classification. Since the dataset may belong to more than one cluster, we
propose to use a soft clustering, that is often named as fuzzy c-means (FCM) (Rezaee et al., 1998),
which aims to minimize the objective function

F = arg min
C

N∑
i=1

ms∑
j=1

w
mf

ij ||xi − cj ||2, wij ∈ [0, 1] (3)

where C = {c1, ..., cms} is the cluster centres, wij is the partition matrix that quantifies the fuzzy
degree to which element xi belongs to cluster cj , and mf = 2 is a hyperparameter in the FCM.

2.3 SPECTRAL NORMALIZATION AS A REGULARIZATION

Another limitation in DKL is the uncertainty estimation is sensitive to changes in the input such
that we need to avoid mapping out of distribution data to in distribution feature. This is often called
feature collapse Van Amersfoort et al. (2020) address this issue by regularising the representation map
using a two-side gradient penalty that was first introduced by the improvement of GANs (Gulrajani
et al., 2017). van Amersfoort et al. (2021) further improved their previous work by introducing
spectral normalization proposed by Miyato et al. (2018) and demonstrated that it is more effective
on mitigating feature collapse and faster than the gradient penalty method. In this work, we use
spectral normalization as a regularization combined with a residual neural architecture for deep
feature extraction. Our proposed algorithm is summarized as Algorithm 1.

Algorithm 1: Efficient uncertainty estimation in deep neural networks

1: Require: training data
{

(xi,yi)
N
i=1

}
, wide residual neural networks Ωθ with parameters θ, the number

of inducing point ms, approximate GP with parameters ξ including inducing point locations `s, fuzzy
hyperparameter, mf , learning rate λ.

2: Initialize inducing points with fuzzy c-means clustering
3: Draw a random subset of mr point from the training data X ini ⊂ X
4: Compute the fuzzy clustering (soft k-means) on Ωθ(X

ini) with k = mr , use the centroids as initial inducing
point locations `s in approximate GP.

5: Train residual neural networks and GP jointly
6: Implement spectral normalization on residual neural network parameters θ̂ ← θ
7: Evaluate forward model to extract the feature space ψ ← Ωθ̂(x)
8: Evaluate approximate GP on feature space with parameter ξ, p(ŷ|x)← GPξ(ψ)
9: Define the loss function L using the negative evidence lower bound, L ← NELBξ(p(ŷ|x),y)

10: Minimize the loss function L with respect to θ ξ via θ, ξ ← θ, ξ + λ · ∇θ,ξL

3 EXPERIMENTS

3.1 1D SINUSOIDS REGRESSION PROBLEM

Figure 1 shows the prediction results on a 1D dataset (total 500 data) drawn from sinusoids. Spectral
normalization and Matérn kernel in approximate GP is used in this case. We investigate the effect of
inducing points size on the prediction and found that fewer points may lead to a bad accuracy but the
prediction performance tends to consistent when we increase the number to 50 and 100. There is a
trade-off between the accuracy and computational cost so, in practice, we believe we can determine
the optimal number of inducing points through several trials without requiring a fine-tune.

3.2 TOTAL ENERGY PREDICTION IN CRYSTAL LATTICE SYSTEMS

materials chemistry simulations are performed to simulate these materials under perturbation and
obtain their resulting physical properties such as total energy. Here, we tackle the robust prediction
of total energy to strain mapping for the case of the SrTiO3 perovskite oxide, which is otherwise
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10 inducing points 20 inducing points 50 inducing points 100 inducing points

Figure 1: A simple 1D regression task. The true data is marked by red and the the prediction including
uncertainty is marked by blue. Different number of inducing points are compared and we can note that
the fewer inducing points (e.g., 10 points) may lead to a poor uncertainty estimation and increasing
points will improve the prediction including uncertainty as expected.

intractable to obtain from materials chemistry Zhang & Fung (2021a;b). This can be an exceptionally
difficult problem due to the complex underlying physics, and the high degree of sensitivity of the total
energy to the lattice parameters including the length and angle, requiring very accurate predictions
for the generated structures to succeed. This proposed method can be extended to study various
crystal lattice structures, including bulk, surface, metal-organic frameworks (MOFs), 2D materials,
and cluster structures in materials chemistry, as shown in Fig. 2.

Bulk Surface MOF 2D Cluster

Figure 2: Various crystal lattice structures in materials chemistry (Fung et al., 2021).

In this example, the lattice constants and angles a, b, c, α, β, γ were sampled uniformly within
a range of 10% deviation from the equilibrium crystal parameters: a = b = c = 3.914 Å and
α = β = γ = 90◦. Within the perturbed ranges (± 10% of equilibrium value) in the lattice
constants of the training data, the total energy of the crystals was found to vary between -8 to -37
eV, representing a very wide range in energies. A total of 5000 data (structures) were generated and
total energy obtained using DFT which was performed with the Vienna Ab Initio Simulation Package
(VASP) package. Here we use spectral normalization, with a Matérn kernel and train 1000 epochs on
a Nivida P4000 GPU within 10 minutes.

10 inducing points 10 inducing points50 inducing points 50 inducing points

Figure 3: Illustration of the total energy prediction with respect to lattice length and lattice angle
parameters given 10 and 50 inducing points.

Fig 3 shows the total energy prediction with respect to the lattice length and angle. Note that our
prediction is accurate and robust with low uncertainty near the equilibrium status as discussed above
but shows relatively large uncertainty on the input space that is far away from any data seen during
training, particularly when lattice length and angle is out of the perturbed range. We also compare
the performance caused by the number of inducing points and found that a slight difference exists
when there is no data but the prediction is similar within the perturbed range of lattice parameters.
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4 CONCLUSION

We propose an efficient uncertainty estimation in deep learning and apply it for robust prediction
of total energy in materials chemistry, specifically crystal lattice systems. Our approach is built
upon deep kernel learning (DKL) and addresses the existing challenges by combining spectral
normalization and inducing point approximate GP in feature space. The results demonstrate our
approach offers a robust prediction for the total energy using DFT simulation data. The future work
will aim to compare our approach to other baseline methods, such as Monte Carlo dropout, Bayesian
neural networks, deep ensemble methods and deterministic uncertainty estimation methods in terms
of the stability, accuracy and efficiency of predictive uncertainty.
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